logo

SCIENTIA SINICA Vitae, Volume 50 , Issue 3 : 270-286(2020) https://doi.org/10.1360/SSV-2019-0234

Insomnia disorder and hyperarousal: evidence from resting-state and sleeping EEG

More info
  • ReceivedOct 30, 2019
  • AcceptedDec 18, 2019
  • PublishedJan 8, 2020

Abstract

Insomnia has become the second highly prevalent mental illness, secondary only to depression. The hyperarousal model of insomnia is one of the theories dedicated to clarifying the pathophysiological mechanism of insomnia disorder. The resting-state and sleeping EEG provide substantial evidence for this model. The current review firstly summarizes the analytic methods of the resting-state and sleeping EEG, and these methods can be mainly used to analyze the EEG data during wakefulness, sleep onset period and all sleep stages. Through literature review, we found that the EEG evidence of hyperarousal in insomniacs included impaired sleep continuity and architecture, enhanced frequency of arousal, delayed daytime sleep latency, and increased β activity during wakefulness and non-rapid eye movement sleep. Some interventions, such as cognitive behavioral therapy for insomnia, non-benzodiazepine hypnotics and slow oscillating transcranial direct current stimulation during sleep, turned out to be the effective therapies that could reduce the cortical hyperarousal in patients with insomnia. Power spectral analysis might aid in differentiating some insomnia subtypes, and could be used in the diagnosis and evaluation of the treatment response in patients with insomnia, but the confounding factors such as age, gender, and EEG band subdivision, should be considered. Future studies should focus on different insomnia subtypes, adopt a unified EEG band subdivision, and consider the possible interferences of patients’ age and gender. Based on the polysomnography derived sleep scoring, some meso/micro-analyses such as EEG source imaging and EEG time-frequency analysis should also be our primary concerns.


Funded by

国家自然科学基金(31971028)


References

[1] American Academy of Sleep Medicine. International Classifcation of Sleep Disorders. 3rd ed. Darien, IL: American Academy of Sleep Medicine, 2014. 30. Google Scholar

[2] Cao X L, Wang S B, Zhong B L, et al. The prevalence of insomnia in the general population in China: A meta-analysis. PLoS ONE, 2017, 12: e0170772 CrossRef PubMed Google Scholar

[3] Shi L, Chen S J, Ma M Y, et al. Sleep disturbances increase the risk of dementia: A systematic review and meta-analysis. Sleep Med Rev, 2018, 40: 4-16 CrossRef PubMed Google Scholar

[4] Hertenstein E, Feige B, Gmeiner T, et al. Insomnia as a predictor of mental disorders: A systematic review and meta-analysis. Sleep Med Rev, 2019, 43: 96-105 CrossRef PubMed Google Scholar

[5] Spielman A J, Caruso L S, Glovinsky P B. A behavioral perspective on insomnia treatment. Psychiatr Clin North Am, 1988, 10: 541-553 CrossRef Google Scholar

[6] Harvey A G. A cognitive model of insomnia. Behav Res Ther, 2002, 40: 869-893 CrossRef Google Scholar

[7] Espie C A, Broomfield N M, MacMahon K M A, et al. The attention-intention-effort pathway in the development of psychophysiologic insomnia: A theoretical review. Sleep Med Rev, 2006, 10: 215-245 CrossRef PubMed Google Scholar

[8] Perlis M L, Giles D E, Mendelson W B, et al. Psychophysiological insomnia: The behavioural model and a neurocognitive perspective. J Sleep Res, 1997, 6: 179-188 CrossRef PubMed Google Scholar

[9] Tahmasian M, Noori K, Samea F, et al. A Lack of consistent brain alterations in insomnia disorder: An activation likelihood estimation meta-analysis. Sleep Med Rev, 2018, 42: 111-118 CrossRef PubMed Google Scholar

[10] Perlis M L, Merica H, Smith M T, et al. Beta EEG activity and insomnia. Sleep Med Rev, 2001, 5: 365-376 CrossRef PubMed Google Scholar

[11] Berry R B, Albertario C L, Harding S M, et al. For the American Academy of Sleep Medicine. In: The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. Version 2.5. Darien, IL: American Academy of Sleep Medicine, 2018. Google Scholar

[12] Feige B, Baglioni C, Spiegelhalder K, et al. The microstructure of sleep in primary insomnia: An overview and extension. Int J Psychophysiol, 2013, 89: 171-180 CrossRef PubMed Google Scholar

[13] Littner M R, Kushida C, Wise M, et al. Practice parameters for clinical use of the multiple sleep latency test and the maintenance of wakefulness test. Sleep, 2005, 28: 113-121 CrossRef PubMed Google Scholar

[14] Scoring E A. EEG arousals: Scoring rules and examples: A preliminary report from the Sleep Disorders Atlas Task Force of the American Sleep Disorders Association. Sleep, 1992, 15: 173–184. Google Scholar

[15] Terzano M G, Parrino L, Smerieri A, et al. Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med, 2001, 3: 187-199 CrossRef Google Scholar

[16] Kropotov J D. Quantitative EEG, Event-Related Potentials and Neurotherapy. Burlington: Academic Press, 2010. 125. Google Scholar

[17] Lei X, Zhao Z, Chen H. Extraversion is encoded by scale-free dynamics of default mode network. NeuroImage, 2013, 74: 52-57 CrossRef PubMed Google Scholar

[18] He B J. Scale-free brain activity: Past, present, and future. Trends Cogn Sci, 2014, 18: 480-487 CrossRef PubMed Google Scholar

[19] Cohen M X. Analyzing Neural Time Series Data: Theory and Practice. Cambridge: MIT Press, 2014. 319. Google Scholar

[20] Bastien C H, St-Jean G, Turcotte I, et al. Sleep spindles in chronic psychophysiological insomnia. J Psychosom Res, 2009, 66: 59-65 CrossRef PubMed Google Scholar

[21] Bastien C H, St-Jean G, Turcotte I, et al. Spontaneous K-complexes in chronic psychophysiological insomnia. J Psychosom Res, 2009, 67: 117-125 CrossRef PubMed Google Scholar

[22] Kovrov G V, Posokhov S I, Strygin K N. Interhemispheric EEG asymmetry in patients with insomnia during nocturnal sleep. Bull Exp Biol Med, 2006, 141: 197-199 CrossRef PubMed Google Scholar

[23] Hamida S T, Penzel T, Ahmed B. EEG time and frequency domain analyses of primary insomnia. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Milan, 2015. Piscataway: IEEE, 2015. 6206–6209. Google Scholar

[24] Marzano C, Ferrara M, Sforza E, et al. Quantitative electroencephalogram (EEG) in insomnia: A new window on pathophysiological mechanisms. Curr Pharm Des, 2008, 14: 3446-3455 CrossRef PubMed Google Scholar

[25] Riemann D, Spiegelhalder K, Feige B, et al. The hyperarousal model of insomnia: A review of the concept and its evidence. Sleep Med Rev, 2010, 14: 19-31 CrossRef PubMed Google Scholar

[26] Baglioni C, Regen W, Teghen A, et al. Sleep changes in the disorder of insomnia: A meta-analysis of polysomnographic studies. Sleep Med Rev, 2014, 18: 195-213 CrossRef PubMed Google Scholar

[27] Krystal A D. Non-REM sleep EEG spectral analysis in insomnia. Psychiat Ann, 2008, 38: 615–620. Google Scholar

[28] Israel B, Buysse D J, Krafty R T, et al. Short-term stability of sleep and heart rate variability in good sleepers and patients with insomnia: For some measures, one night is enough. Sleep, 2012, 35: 1285-1291 CrossRef PubMed Google Scholar

[29] Hauri P J, Olmstead E M. Reverse first night effect in insomnia. Sleep, 1989, 12: 97-105 CrossRef PubMed Google Scholar

[30] Feige B, Al-Shajlawi A, Nissen C, et al. Does REM sleep contribute to subjective wake time in primary insomnia? A comparison of polysomnographic and subjective sleep in 100 patients. J Sleep Res, 2008, 17: 180-190 CrossRef PubMed Google Scholar

[31] Bonnet M H, Arand D L. Hyperarousal and insomnia: State of the science. Sleep Med Rev, 2010, 14: 9-15 CrossRef PubMed Google Scholar

[32] Terzano M G, Mancia D, Salati M R, et al. The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep, 1985, 8: 137-145 CrossRef PubMed Google Scholar

[33] Parrino L, Ferri R, Bruni O, et al. Cyclic alternating pattern (CAP): The marker of sleep instability. Sleep Med Rev, 2012, 16: 27-45 CrossRef PubMed Google Scholar

[34] Terzano M G, Parrino L, Spaggiari M C, et al. CAP variables and arousals as sleep electroencephalogram markers for primary insomnia. Clin Neurophysiol, 2003, 114: 1715-1723 CrossRef Google Scholar

[35] Chouvarda I, Mendez M O, Rosso V, et al. Cyclic alternating patterns in normal sleep and insomnia: Structure and content differences. IEEE Trans Neural Syst Rehabil Eng, 2012, 20: 642-652 CrossRef PubMed Google Scholar

[36] Parrino L, Milioli G, De Paolis F, et al. Paradoxical insomnia: The role of CAP and arousals in sleep misperception. Sleep Med, 2009, 10: 1139-1145 CrossRef PubMed Google Scholar

[37] Freedman R R. EEG power spectra in sleep-onset insomnia. Electroencephalogr Clin Neurophysiol, 1986, 63: 408-413 CrossRef Google Scholar

[38] Merica H, Gaillard J M. The EEG of the sleep onset period in insomnia: A discriminant analysis. Physiol Behav, 1992, 52: 199-204 CrossRef Google Scholar

[39] Regestein Q R, Dambrosia J, Hallett M, et al. Daytime alertness in patients with primary insomnia. Am J Psychiatry, 1993, 150: 1529-1534 CrossRef PubMed Google Scholar

[40] Lamarche C H, Ogilvie R D. Electrophysiological changes during the sleep onset period of psychophysiological insomniacs. Psychiatric insomniacs, and normal sleepers. Sleep, 1997, 20: 726-733 CrossRef Google Scholar

[41] Merica H, Blois R, Gaillard J M. Spectral characteristics of sleep EEG in chronic insomnia. Eur J Neurosci, 1998, 10: 1826-1834 CrossRef PubMed Google Scholar

[42] Perlis M L, Kehr E L, Smith M T, et al. Temporal and stagewise distribution of high frequency EEG activity in patients with primary and secondary insomnia and in good sleeper controls. J Sleep Res, 2001, 10: 93-104 CrossRef PubMed Google Scholar

[43] Perlis M L, Smith M T, Andrews P J, et al. Beta/gamma EEG activity in patients with primary and secondary insomnia and good sleeper controls. Sleep, 2001, 24: 110-117 CrossRef PubMed Google Scholar

[44] Krystal A D, Edinger J D, Wohlgemuth W K, et al. NREM sleep EEG frequency spectral correlates of sleep complaints in primary insomnia subtypes. Sleep, 2002, 25: 626–636. Google Scholar

[45] Staner L, Cornette F, Maurice D, et al. Sleep microstructure around sleep onset differentiates major depressive insomnia from primary insomnia. J Sleep Res, 2003, 12: 319-330 CrossRef PubMed Google Scholar

[46] Buysse D J, Germain A, Hall M L, et al. EEG spectral analysis in primary insomnia: NREM period effects and sex differences. Sleep, 2008, 31: 1673-1682 CrossRef PubMed Google Scholar

[47] Wolyńczyk-Gmaj D, Szelenberger W. Waking EEG in primary insomnia. Acta Neurobiol Exp, 2011, 71: 387–392. Google Scholar

[48] Corsi-Cabrera M, Figueredo-Rodríguez P, del Río-Portilla Y, et al. Enhanced frontoparietal synchronized activation during the wake-sleep transition in patients with primary insomnia. Sleep, 2012, 35: 501-511 CrossRef PubMed Google Scholar

[49] Spiegelhalder K, Regen W, Feige B, et al. Increased EEG sigma and beta power during NREM sleep in primary insomnia. Biol Psychol, 2012, 91: 329-333 CrossRef PubMed Google Scholar

[50] St-Jean G, Turcotte I, Pérusse A D, et al. REM and NREM power spectral analysis on two consecutive nights in psychophysiological and paradoxical insomnia sufferers. Int J Psychophysiol, 2013, 89: 181-194 CrossRef PubMed Google Scholar

[51] Wu Y M, Pietrone R, Cashmere J D, et al. EEG power during waking and NREM sleep in primary insomnia. J Clin Sleep Med, 2013, 9: 1031-1037 CrossRef PubMed Google Scholar

[52] Cervena K, Espa F, Perogamvros L, et al. Spectral analysis of the sleep onset period in primary insomnia. Clin Neurophysiol, 2014, 125: 979-987 CrossRef PubMed Google Scholar

[53] Ferri R, Cosentino F I I, Manconi M, et al. Increased electroencephalographic high frequencies during the sleep onset period in patients with restless legs syndrome. Sleep, 2014, 37: 1375-1381 CrossRef PubMed Google Scholar

[54] Neu D, Mairesse O, Verbanck P, et al. Slow wave sleep in the chronically fatigued: Power spectra distribution patterns in chronic fatigue syndrome and primary insomnia. Clin Neurophysiol, 2015, 126: 1926-1933 CrossRef PubMed Google Scholar

[55] Perrier J, Clochon P, Bertran F, et al. Specific EEG sleep pattern in the prefrontal cortex in primary insomnia. PLoS ONE, 2015, 10: e0116864 CrossRef PubMed Google Scholar

[56] Colombo M A, Ramautar J R, Wei Y, et al. Wake high-density electroencephalographic spatiospectral signatures of insomnia. Sleep, 2016, 39: 1015-1027 CrossRef PubMed Google Scholar

[57] Corsi-Cabrera M, Rojas-Ramos O A, del Río-Portilla Y. Waking EEG signs of non-restoring sleep in primary insomnia patients. Clin Neurophysiol, 2016, 127: 1813-1821 CrossRef PubMed Google Scholar

[58] Riedner B A, Goldstein M R, Plante D T, et al. Regional patterns of elevated alpha and high-frequency electroencephalographic activity during nonrapid eye movement sleep in chronic insomnia: A pilot study. Sleep, 2016, 39: 801-812 CrossRef PubMed Google Scholar

[59] Kang S G, Mariani S, Marvin S A, et al. Sleep EEG spectral power is correlated with subjective-objective discrepancy of sleep onset latency in major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry, 2018, 85: 122-127 CrossRef PubMed Google Scholar

[60] Kwan Y, Baek C, Chung S, et al. Resting-state quantitative EEG characteristics of insomniac patients with depression. Int J Psychophysiol, 2018, 124: 26-32 CrossRef PubMed Google Scholar

[61] Aydın S. Computer based synchronization analysis on sleep EEG in insomnia. J Med Syst, 2011, 35: 517-520 CrossRef PubMed Google Scholar

[62] Babiloni C, Barry R J, Başar E, et al. International federation of clinical neurophysiology (IFCN)—EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: applications in clinical research studies. Clin Neurophysiol, 2020, 131: 285-307 CrossRef PubMed Google Scholar

[63] St-Jean G, Turcotte I, Bastien C H. Cerebral asymmetry in insomnia sufferers. Front Neur, 2012, 3: 47 CrossRef PubMed Google Scholar

[64] Gudmundsson S, Runarsson T P, Sigurdsson S, et al. Reliability of quantitative EEG features. Clin Neurophysiol, 2007, 118: 2162-2171 CrossRef PubMed Google Scholar

[65] Crenshaw M C, Edinger J D. Slow-wave sleep and waking cognitive performance among older adults with and without insomnia complaints. Physiol Behav, 1999, 66: 485-492 CrossRef Google Scholar

[66] Wilckens K A, Hall M H, Nebes R D, et al. Changes in cognitive performance are associated with changes in sleep in older adults with insomnia. Behav Sleep Med, 2016, 14: 295-310 CrossRef PubMed Google Scholar

[67] Hall M, Buysse D J, Nowell P D, et al. Symptoms of stress and depression as correlates of sleep in primary insomnia. Psychosom Med, 2000, 62: 227-230 CrossRef PubMed Google Scholar

[68] Hall M, Thayer J F, Germain A, et al. Psychological stress is associated with heightened physiological arousal during NREM sleep in primary insomnia. Behav Sleep Med, 2007, 5: 178-193 CrossRef PubMed Google Scholar

[69] Johnson L C, Hanson K, Bickford R G. Effect of flurazepam on sleep spindles and K-complexes. Electroencephalogr Clin Neurophysiol, 1976, 40: 67-77 CrossRef Google Scholar

[70] Johnson L C, Seales D M, Naitoh P, et al. The effects of flurazepam hydrochloride on brain electrical activity during sleep. Electroencephalogr Clin Neurophysiol, 1979, 47: 309-321 CrossRef Google Scholar

[71] Johnson L C, Spinweber C L, Seidel W F, et al. Sleep spindle and delta changes during chronic use of a short-acting and a long-acting benzodiazepine hypnotic. Electroencephalogr Clin Neurophysiol, 1983, 55: 662-667 CrossRef Google Scholar

[72] Tuk B, Oberyé J J L, Pieters M S M, et al. Pharmacodynamics of temazepam in primary insomnia: Assessment of the value of quantitative electroencephalography and saccadic eye movements in predicting improvement of sleep. Clin Pharmacol Ther, 1997, 62: 444-452 CrossRef Google Scholar

[73] Poyares D, Guilleminault C, Ohayon M M, et al. Chronic benzodiazepine usage and withdrawal in insomnia patients. J Psychiatr Res, 2004, 38: 327-334 CrossRef PubMed Google Scholar

[74] Manconi M, Ferri R, Miano S, et al. Sleep architecture in insomniacs with severe benzodiazepine abuse. Clin Neurophysiol, 2017, 128: 875-881 CrossRef PubMed Google Scholar

[75] Monti J M, Alvariño F, Monti D. Conventional and power spectrum analysis of the effects of zolpidem on sleep EEG in patients with chronic primary insomnia. Sleep, 2000, 23: 1075–1084. Google Scholar

[76] Benoit O, Bouard G, Payan C, et al. Effect of a single dose (10 mg) of zolpidem on visual and spectral analysis of sleep in young poor sleepers. Psychopharmacology, 1994, 116: 297-303 CrossRef PubMed Google Scholar

[77] Ma J, Svetnik V, Snyder E, et al. Electroencephalographic power spectral density profile of the orexin receptor antagonist suvorexant in patients with primary insomnia and healthy subjects. Sleep, 2014, 37: 1609-1619 CrossRef PubMed Google Scholar

[78] Nowell P D, Reynolds Iii C F, Buysse D J, et al. Paroxetine in the treatment of primary insomnia. J Clin Psychiatry, 1999, 60: 89-95 CrossRef PubMed Google Scholar

[79] Lo H S, Yang C M, Lo H G, et al. Treatment effects of gabapentin for primary insomnia. Clin Neuropharmacol, 2010, 33: 84-90 CrossRef PubMed Google Scholar

[80] Cervena K, Dauvilliers Y, Espa F, et al. Effect of cognitive behavioural therapy for insomnia on sleep architecture and sleep EEG power spectra in psychophysiological insomnia. J Sleep Res, 2004, 13: 385-393 CrossRef PubMed Google Scholar

[81] Jacobs G D, Benson H, Friedman R. Home-based central nervous system assessment of a multifactor behavioral intervention for chronic sleep-onset insomnia. Behav Ther, 1993, 24: 159-174 CrossRef Google Scholar

[82] Krystal A D, Edinger J D. Sleep EEG predictors and correlates of the response to cognitive behavioral therapy for insomnia. Sleep, 2010, 33: 669-677 CrossRef PubMed Google Scholar

[83] Hammer B U, Colbert A P, Brown K A, et al. Neurofeedback for insomnia: A pilot study of Z-score SMR and individualized protocols. Appl Psychophysiol Biofeedback, 2011, 36: 251-264 CrossRef PubMed Google Scholar

[84] Schabus M, Griessenberger H, Gnjezda M T, et al. Better than sham? A double-blind placebo-controlled neurofeedback study in primary insomnia. Brain, 2017, 140: 1041-1052 CrossRef PubMed Google Scholar

[85] Saebipour M R, Joghataei M T, Yoonessi A, et al. Slow oscillating transcranial direct current stimulation during sleep has a sleep-stabilizing effect in chronic insomnia: A pilot study. J Sleep Res, 2015, 24: 518-525 CrossRef PubMed Google Scholar

[86] Frase L, Selhausen P, Krone L, et al. Differential effects of bifrontal tDCS on arousal and sleep duration in insomnia patients and healthy controls. Brain Stimul, 2019, 12: 674-683 CrossRef PubMed Google Scholar

[87] Tegeler C H, Kumar S R, Conklin D, et al. Open label, randomized, crossover pilot trial of high-resolution, relational, resonance-based, electroencephalic mirroring to relieve insomnia. Brain Behav, 2012, 2: 814-824 CrossRef PubMed Google Scholar

[88] Goldstein M R, Turner A D, Dawson S C, et al. Increased high-frequency NREM EEG power associated with mindfulness-based interventions for chronic insomnia: Preliminary findings from spectral analysis. J Psychosom Res, 2019, 120: 12-19 CrossRef PubMed Google Scholar

[89] Yu H, Zheng W, Liu M, et al. Effects of magnetic stimulation on insomnia based on brain functional networks. IEEE Trans Magn, 2018, 54: 1-4 CrossRef Google Scholar

[90] Song P, Lin H, Li S, et al. Repetitive transcranial magnetic stimulation (rTMS) modulates time-varying electroencephalography (EEG) network in primary insomnia patients: A TMS-EEG study. Sleep Med, 2019, 56: 157-163 CrossRef PubMed Google Scholar

[91] Blanken T F, Benjamins J S, Borsboom D, et al. Insomnia disorder subtypes derived from life history and traits of affect and personality. Lancet Psychiatry, 2019, 6: 151-163 CrossRef Google Scholar

[92] Svetnik V, Snyder E S, Ma J, et al. EEG spectral analysis of NREM sleep in a large sample of patients with insomnia and good sleepers: Effects of age, sex and part of the night. J Sleep Res, 2017, 26: 92-104 CrossRef PubMed Google Scholar

  • Figure 1

    The methods of analyzing resting-state and sleeping EEG data, and these methods can be classified according to the brain states, temporal and spatial resolutions, and computational complexity

  • Figure 2

    The resting-state and sleeping electrophysiological indices of cerebral hyperarousal in insomniacs, treatment options that could reduce this kind of hyperarousal, and the cortical response after treatment

  • Table 1   Studies on power spectral analysis in insomnia disorder as compared to healthy sleepers

    序号

    作者/年份

    被试(ID/HC)

    年龄

    (ID/HC)

    EEG导联

    有无适应性睡眠

    清醒

    静息态

    SOP

    NREM

    REM

    1

    Freedman et al., 1986[37]

    ID n=12

    HC n=12

    ID: 31.8±11.4

    HC: 27.8±9.7

    C3-A2;

    O1-A2

    β↑

    α↓

    β(N1)↑

    β↑

    2

    Merica et al., 1992[38]

    ID n=12

    HC n=23

    ID: 35.9±11.3

    HC: 30.0±9.5

    T3-Cz;

    T4-Cz

    δ↓

    3

    Regestein et al., 1993[39]

    ID n=20

    HC n=20

    ID: 37±11

    HC: 31±11

    O1-A2;

    O2-A1

    α↑

    non-α↑

    4

    Lamarche et al., 1997[40]

    ID n=6

    HC n=6

    ID: 27.8±10.3

    HC: 27.8±9.6

    C3-A2;

    C4-A1;

    O2-A1

    β↑

    δ, α↓

    5

    Merica et al., 1998[41]

    ID n=20

    HC n=19

    ID: 30.2±10.9

    HC: 25.3±4

    F4-Cz

    δ, θ, α↓

    β↑

    δ, θ↓

    α,σ,β↑

    6

    Perlis et al., 2001[42,43]

    ID n=9

    HC n=9

    ID: 36.5±10.8

    HC: 38.1±11.2

    C3-A2;

    C4-A1;

    (C3/A2+C4/A1)/2

    N.S.

    β1, β2, γ↑

    β2↑

    7

    Krystal et al., 2002[44]

    SID n=12

    OID n=18

    HC n=20

    SID: 56.1±11.7

    OID: 54.3±9.9

    HC: 53.5±10.4

    C3-A2;

    SID: δ↓;

    α,σ,β↑;

    OID: σ↑

    N.S.

    8

    Staner et al., 2003[45]

    ID n=21

    HC n=21

    ID: 40.5±10.3

    HC: 44.3±13.2

    C3-A2

    δ, α, β1↓

    SWA↓

    9

    Buysse et al., 2008[46]

    ID n=48

    HC n=25

    ID: 30.8±7.2

    HC: 30.6±7.4

    C3-A2;

    C4-A1

    β, γ↑

    ♀: δ, θ, β, γ↑

    10

    Wolyńczyk-Gmaj et al., 2011[47]

    ID n=36

    HC n=29

    ID: 36±12.3

    HC: 38±11.5

    Fp1, Fp2, Fpz, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2, Oz

    θ↓

    β3, β4↑

    11

    Corsi-Cabrera et al., 2012[48]

    ID n=10

    HC n=10

    ID: 25.9±4.3

    HC: 25.6±4.6

    Fp1, Fp2, F3, F4, F7, F8, Fz, P3, P4, Pz

    β, γ↑

    12

    Israel et al., 2012[28]

    ID n=54

    HC n=22

    ID: 34.6±9.7

    HC: 26.5±7.3

    C3-(A1+A2)/2;

    C4-(A1+A2)/2

    α, β↑

    13

    Spiegelhalder et al., 2012[49]

    ID n=25

    HC n=29

    ID: 47.8±7.2

    HC: 46.5±5.0

    C3-A2;

    C4-A1

    α, β1, β2(N2)↑

    N.S.

    14

    St-Jean et al., 2013[50]

    SID n=20

    OID n=26

    HC n=21

    SID: 40.6±9.29

    OID: 41.23±9.65

    HC: 38.57±9.35

    F3, F4, Fz, C3, C4, Cz, P3, P4, Pz

    SID: δ↑

    SID: SWA, δ, α, σ↓

    OID: δ↑, θ↓

    15

    Wu et al., 2013[51]

    ID n=50

    HC n=32

    ID: 36.3±8.9

    HC: 32.7±9.3

    C3-A2;

    C4-A1

    N.S.

    N.S.

    16

    Cervena et al., 2014[52]

    SOI n=10

    SMI n=10

    HC n=10

    SOI: 34.2±10.4

    SMI: 41.6±9.3

    HC: 41.4±13.1

    C3-A2

    N.S.

    SOI:β2↓

    SMI:α↑

    17

    Ferri et al., 2014[53]

    ID n=11

    HC n=14

    ID: 58.9±13.4

    HC: 50.3±15.83

    C3-A2;

    C4-A1

    α, β/δ↑;

    δ↓

    SOP-1: α, σ, β, β/δ↑; δ↓

    SOP-2: α, β, β/δ↑; δ↓

    18

    Neu et al., 2015[54]

    ID n=15

    HC n=22

    ID: 40.87±10.9

    HC: 38.45±14.2

    FP2-A1;

    C4-A1;

    O2-A1

    δ, θ, α, σ(N3)↑; US↓

    19

    Perrier et al., 2015[55]

    ID n=14

    HC n=10

    ID: 47±17

    HC: 46±15

    FP1, FP2, C3, C4, O1, O2, T3, T4 ((A1+A2)/2)

    α, σ, β↑;

    δ↓

    N.S.

    20

    Colombo et al., 2016[56]

    ID n=51

    HC n=43

    ID: 50.0±13.4

    HC: 46.1±14.9

    256导(平均参考)

    LO/HI(EC&EO), α2(EO)↓;

    β(EC)↑

    21

    Corsi-Cabrera et al., 2016[57]

    ID n=10

    HC n=10

    ID: 25.8±1.7

    HC: 26.6±1.6

    Fp1, F7, F3, P3, Pz, T5, O1

    β, γ(AM)↑

    22

    Riedner et al., 2016[58]

    ID n=8

    HC n=8

    ID: 41.5±4.7

    HC: 41.6±4.8

    256导(平均参考)

    α, β, γ↑

    23

    Kang et al., 2018[59]

    ID n=19

    HC n=23

    ID: 37.6±14.9

    HC: 33.5±14.2

    C3-A2

    N.S.

    24

    Kwan et al., 2018[60]

    ID n=15

    HC n=15

    ID: 22.67±2.9

    HC: 22.07±2.15

    FP1, FP2,

    F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2

    β2, γ(LC)↑

  • Table 2   EEG band subdivision of the studies on power spectral analysis in adults with insomnia

    序号

    作者/年份

    SWS/US

    (Hz)

    δ

    (Hz)

    θ

    (Hz)

    α

    (Hz)

    σ

    (Hz)

    β

    (Hz)

    γ

    (Hz)

    ω

    (Hz)

    1

    Freedman et al., 1986[37]

    0.5~35 Hz, 1 Hz分辨率

    2

    Merica et al., 1992[38]

    0.4~3.9

    3.9~6.7

    6.7~12.5

    12.5~14.7

    14.7~30

    3

    Regestein et al., 1993[39]

    non-α(1~<8)

    8~12

    non-α(>12~75)

    4

    Lamarche et al., 1997[40]

    0.5~4

    4~8

    8~12

    12~15

    15~25

    5

    Merica et al., 1998[41]

    0.5~3.75

    3.75~6.75

    6.75~12.5

    12.5~14.75

    14.75~30

    6

    Perlis et al., 2001[42,43]

    0.5~2.5

    2.5~7.5

    7.5~12

    12~14

    β1: 14~20

    β2: 20~35

    35~45

    45~125

    7

    Krystal et al., 2002[44]

    0.5~3.5

    4~8

    8.5~12

    12.5~16

    16.5~30

    30.5~60

    8

    Staner et al., 2003[45]

    0.5~3.5

    4~7.5

    8~12.5

    11.5~15

    β1: 13~21.5

    β2: 22~30

    9

    Buysse et al., 2008[46]

    0.5~-4

    4~8

    8~12

    12~16

    16~32

    32~50

    10

    Wolyńczyk-Gmaj et al., 2011[47]

    1~4

    4~8

    8~12

    β1: 12~15

    β2: 15~18

    β3: 18~25

    β4: 25~30

    11

    Corsi-Cabrera et al., 2012[48]

    17~30

    31~45

    12

    Israel et al., 2012[28]

    0.5~4

    4~8

    8~2

    12~16

    16~32

    13

    Spiegelhalder et al., 2012[49]

    δ1: 0.1~1

    δ2: 1~3.5

    3.5~8

    8~12

    12~16

    β1: 16~24

    β2: 24~32

    32~48

    14

    St-Jean et al., 2013[50]

    0~1

    1~4

    4~7

    7~11

    11~14

    β1: 14~20

    β2: 20~35

    35~60

    60~125

    15

    Wu et al., 2013[51]

    0.5~4

    4~8

    8~12

    12~16

    β1: 16~20

    β2: 20~30

    32~48

    16

    Cervena et al., 2014[52]

    1~3.75

    4~7.75

    8~11.75

    12~14.75

    β1: 15~17.75

    β2: 18~29.75

    β3: 30~39.75

    17

    Ferri et al., 2014[53]

    0.5~3.75

    4~7.75

    8~11.5

    11.75~14.75

    15~32

    18

    Neu et al., 2015[54]

    0.3~0.79

    0.8~3.9

    4~7.4

    7.5~12.4

    12.5~17.9

    18~25

    19

    Perrier et al., 2015[55]

    1.5~4

    4~7.5

    7.5~12.5

    12.5~14

    14~30

    20

    Colombo et al., 2016[56]

    LO(1.5~16), HI(16~40)

    21

    Corsi-Cabrera et al., 2016[57]

    13~30

    31~50

    22

    Riedner et al., 2016[58]

    1~4

    4~8

    8~12

    12~15

    15~20

    23

    Kang et al., 2018[59]

    0.5~1

    1~4

    4~8

    8~12

    12~15

    15~20

    24

    Kwan et al., 2018[60]

    4~8

    8~12

    12~15

    β1: 15~20

    β2: 25~30

    25

    AASM判读手册2.5版[11]

    0.5~2

    0~3.99

    4~7.99

    8~13

    11~16

    13~35

    26

    IFCN专家共识[62]

    0.1~4

    4~<8

    8~13

    14~30

    >30~80

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号