logo

Chinese Science Bulletin, Volume 65 , Issue 18 : 1875-1887(2020) https://doi.org/10.1360/TB-2019-0513

The largest species of Asianopodus footprints from Junggar Basin, Xinjiang, China

More info
  • ReceivedSep 10, 2019
  • AcceptedMar 11, 2020
  • PublishedMar 12, 2020

Abstract

A discovery has been made where thirteen footprints, two invertebrate traces and symmetrical ripple marks were found in a greyish green calcareous fine sandstone bed. The discovery was found in the Lower Cretaceous Shengjinkou Formation of Urho area, northwestern Junggar Basin, Xinjiang and it formed three trackways and four isolated tracks. Classic methods were used to study the dinosaur footprints in the Urho area, which included measuring the stratigraphic sections and the footprint parameters in the field. Similar standards of measurements were used for the measurement of footprint length and width, digit length and width, the divarication between digits, the length and width of anterior triangle, pace and stride lengths. In addition, photos of each footprint were taken and the orientation and distance between the neighboured tracks were measured. Distributions and outlines of the footprints were drawn in the computer by using CorelDRAW. On the other hand, silicone rubber demould was used for the well preserved specimens for a detailed research and from the detailed study of the footprints and trackways, two different types of theropod footprints were identified. The large three-toed footprints were a new species, named Asianopodus niui ichnosp. nov., which are large sized tridactyl (47.0–56.0 cm long and 31.0–42.0 cm wide, width/length between 0.66–0.75), the divarication between digits II and IV is 49.00°–55.34°, subsymmetrical, digit III is slightly longer than digit II, but more longer than digit IV, the length/width of anterior triangle between 0.34–0.37, V-shape tracks with a distinct bulbous heel impression, without manus and tail impressions, the phalangeal formula is 3-3-2, the pace length is between 164–180 cm, the stride length is 328–336 cm. It is significant to note that this is the largest Asianopodus footprints that have been discovered. The medium-sized tracks belong to Asianopodus pulvinicalx, which are middle sized tridactyl (21.0–27.0 cm long and 18.0–20.0 cm wide, width/length between 0.72–0.86), the divarication between digits II and IV is 46.63°–51.40°, subsymmetrical, digit III is more longer than digit II and digit IV, the length/width of anterior triangle between 0.44–0.54, V-shape tracks with a distinct bulbous heel impression and without manus and tail impressions, the phalangeal formula is 3-3-3, the pace length is between 76.5–83.2 cm, the stride length is 160 cm. According to the footprint length, pace and stride length, relative stride length of the tracks, we calculated that the body length of A. niui ichnosp. nov. is 5.89 m and the speed is 8.14 km/h, while the body length of A. pulvinicalx is 2.52 m and speed is 6.48 km/h. Based on the symmetric ripple marks and invertebrate traces on the surface of the footprints layer, we infered that both the trackmakers of the Urho dinosaur footprints walked in the shore and shallow lacustrine environment.


Funded by

国家自然科学基金(41572020,41688103)

中国科学院B类战略性先导科技专项(XDB26000000,XDB18000000)

中国科学院青年创新促进会(2019075)


Acknowledgment

感谢中国科学院古脊椎动物与古人类研究所向龙、周红娇、李岩、张鑫俊、陈鹤及中国地质大学(北京)王俊霞等, 以及足迹化石的发现者牛春旺先生在野外考察和数据测量等方面的大力支持和帮助; 感谢中国科学院古脊椎动物与古人类研究所的Paul Rummy对英文摘要的修改以及匿名审稿专家提出的修改意见.


References

[1] Hitchcock E. Final Report on the Geology of Massachusetts. Amherst: Adams and Butler, 1841. 1−831. Google Scholar

[2] Sarjeant W A S. Fossil tracks and impressions of vertebrates. In: Frey R W, ed. The Study of Trace Fossils. New York: Springer-Verlag, 1975. 283–324. Google Scholar

[3] Chardin P T D, Young C C. On some traces of vertebrate life in the Jurassic and Triassic beds of Shansi and Shensi. Acta Geol Sin-Engl Ed, 1929, 8: 131–133. Google Scholar

[4] Kuhn O. Die Fährten der Vorzeitlichen Amphibien und Reptilien. Bamberg: Verlagshaus Meisenbach KG, 1958. 1–64. Google Scholar

[5] Young C C. Fossil footprints in China. Vertebr Palasiat, 1960, 4: 53–66. Google Scholar

[6] Young C C. Note on some fossil footprints in China. Acta Geol Sin-Engl Ed, 1943, 13: 151–154. Google Scholar

[7] Young C C. Two footprints from the Jiaoping coal mine of Tungchuan Shensi (in Chinese). Vertebr Palasiat, 1966, 10: 68–70, 72 [杨钟健. 陕西铜川的足印化石. 古脊椎动物学报, 1966, 10: 68–70, 72]. Google Scholar

[8] Young C C. Footprints from Jinghong, Yunnan (in Chinese). Vertebr Palasiat, 1979, 17: 114–115, 179–180 [杨钟健. 云南西双版纳傣族自治州的足印化石. 古脊椎动物学报, 1979, 17: 114–115, 179–180]. Google Scholar

[9] Young C C. Footprints from Luanping, Hebei (in Chinese). Vertebr Palasiat, 1979, 17: 116–117, 181 [杨钟健. 河北滦平县足印化石. 古脊椎动物学报, 1979, 17: 116–117, 181]. Google Scholar

[10] He Q, Xing L D, Wang X L, et al. Sedimentary environment of Late Cretaceous theropod tracksite in Qiyun Mountain, Anhui Province (in Chinese). Geol Bull Chin, 2017, 36: 1506–1513 [何情, 邢立达, 王晓丽, 等. 安徽齐云山晚白垩世兽脚类恐龙足迹点沉积环境. 地质通报, 2017, 36: 1506–1513]. Google Scholar

[11] Xing L D, Buckley L G, Lockley M G, et al. A new bird track, Koreanaornis lii ichnosp. nov., from the Lower Cretaceous Hekou Group in the Lanzhou-Minhe Basin, Gansu, northwest China, and implications for Early Cretaceous avian diversity. Cretac Res, 2016, 66: 141-154 CrossRef Google Scholar

[12] Li Y X, Zhang Y X. Early Middle Jurassic dinosaur footprints from Zizhou County, Shaanxi, China. Vertebr Palasiat, 2017, 55: 276–288. Google Scholar

[13] Xing L D, Lockley M G, Zhang J P, et al. First Early Jurassic ornithischian and theropod footprint assemblage and a new ichnotaxon Shenmuichnus wangi ichnosp. nov. from Yunnan Province, southwestern China. Hist Biol, 2015, 28: 721-733 CrossRef Google Scholar

[14] Wang B P, Li J J, Bai Z Q, et al. Research on dinoasur footprints in Zizhou, Shaanxi Province, China. Acta Geol Sin-Engl Ed, 2016, 90: 1–18. Google Scholar

[15] Xing L D, Lockley M G, Romilio A. An unusual dinosaur track assemblage from the Jurassic-Cretaceous boundary, Anning formation, Lufeng Basin, China. Hist Biol, 2019, : doi: 10.1080/08912963.2019.1642335 CrossRef Google Scholar

[16] Li J J. Footprints of Mesozoic Reptilians and Avians-Palaeovertebrata Sinica Fascicle 8 (Serial No. 12), VolumeⅡ (Amphibians, Reptilians, and Avians) (in Chinese). Beijing: Science Press, 2015. 1–273 [李建军. 中生代爬行类和鸟类足迹——中国古脊椎动物志第二卷(两栖类 爬行类 鸟类)第八册(总第十二册). 北京: 科学出版社, 2015. 1–273]. Google Scholar

[17] Young C C. On a new pterosaurian from Sinkiang, China. Vertebr Palasiat, 1964, 8: 221–256. Google Scholar

[18] Young C C, Dong Z M, Ye X K. Pterosaurian Fauna from Wuerho, Sinkiang—Reports of Paleontological Expedition to Sinkiang (II) (in Chinese). Beijing: Science Press, 1973. 1–52 [杨钟健, 董枝明, 叶祥奎. 乌尔禾翼龙动物群—新疆古生物考察报告(二). 北京: 科学出版社, 1973. 1–52]. Google Scholar

[19] Wang X L, Kellner A W A, Jiang S X, et al. Egg accumulation with 3D embryos provides insight into the life history of a pterosaur. Science, 2017, 358: 1197-1201 CrossRef PubMed Google Scholar

[20] Wang X, Kellner A W A, Jiang S X, et al. Sexually dimorphic tridimensionally preserved pterosaurs and their eggs from China. Curr Biol, 2014, 24: 1323-1330 CrossRef PubMed Google Scholar

[21] Xing L, Avanzini M, Lockley M G, et al. Early Cretaceous turtle tracks and skeletons from the Junggar Basin, Xinjiang, China. Palaios, 2014, 29: 137-144 CrossRef Google Scholar

[22] Xing L, Lockley M G, McCrea R T, et al. First record of Deltapodus tracks from the Early Cretaceous of China. Cretac Res, 2013, 42: 55-65 CrossRef Google Scholar

[23] Xing L D, Lockley M G, Klein H, et al. Dinosaur, bird and pterosaur footprints from the Lower Cretaceous of Wuerhe asphaltite area, Xinjiang, China, with notes on overlapping track relationships. Palaeoworld, 2013, 22: 42-51 CrossRef Google Scholar

[24] He Q, Xing L, Zhang J P, et al. New Early Cretaceous pterosaur-bird track assemblage from Xinjiang, China: Palaeoethology and palaeoenvironment. Acta Geol Sin-Engl Ed, 2013, 87: 1477-1485 CrossRef Google Scholar

[25] Zhao X J. Mesozoic Vertebrate Fossil Strata in Northern Sinkiang-Reports of Paleontological Expedition to Sinkiang (Ⅳ) (in Chinese). Beijing: Science Press, 1980. 63–77 [赵喜进. 新疆北部中生代脊椎动物化石地层——新疆古生物考察报告(四). 北京: 科学出版社, 1980. 63–77]. Google Scholar

[26] Thulborn T. Dinosaur Tracks. London: Chapman and Hall, 1990. 1–410. Google Scholar

[27] Weems R E. A re-evaluation of the axonomy of Newark supergroup saurischian dinosaur tracks, using extensive statistical data from a recently exposed tracksite near Culpeper, Virginia. In: Sweet P C, ed. Proceedings 26th Forum on the Geology of Industrial Minerals. Virginia: Virginia Division of Mineral Resources Publication, 1992, 119. 113–127. Google Scholar

[28] Lockley M G. New perspectives on morphological variation in tridactyl footprints: Clues to widespread convergence in developmental dynamics. Geol Quart, 2009, 53: 415–432. Google Scholar

[29] Alexander R M N. Estimates of speeds of dinosaurs. Nature, 1976, 261: 129-130 CrossRef Google Scholar

[30] Henderson D. Footprints, trackways, and hip heights of bipedal dinosaurs—Testing hip height predictions with computer models. Ichnos, 2003, 10: 99-114 CrossRef Google Scholar

[31] Xing L D, Harris J D, Sun D H, et al. The earliest known deinonychosaur tracks from the Jurassic-Cretaceous boundary in Hebei Province, China. Acta Palaeontol Sin, 2009, 48: 662–671. Google Scholar

[32] Lockley M G. Tracking Dinosaurs: A New Look at an Ancient World. Cambridge: Cambridge University Press, 1991. 1–238. Google Scholar

[33] Matsukawa M, Shibata K, Kukihara R, et al. Review of Japanese dinosaur track localities: Implications for ichnotaxonomy, paleogeography and stratigraphic correlation. Ichnos, 2005, 12: 201-222 CrossRef Google Scholar

[34] Hitchcock E. An attempt to name, classify and describe the animals that made the fossil footmarks of New England. In: Proceedings of the 6th Annual Meeting of Association of American Geologists and Naturalists, New Haven, 1845. 23–25. Google Scholar

[35] Li J J, Bater, Zhang W H, et al. A new type of dinosaur tracks from Lower Cretaceous of Chabu, Otog Qi, Inner Mongolia (in Chinese). Acta Palaeontol Sin, 2006, 45: 221–234 [李建军, 巴特尔, 张维虹, 等. 内蒙古查布地区下白垩统巨齿龙足印化石. 古生物学报, 2006, 45: 221–234]. Google Scholar

[36] Zeng X Y. The dinosaur footprints found in the red bed of Yuanling-Mayang Basin (in Chinese). Hunan Geol, 1982, 1: 57–58, 104 [曾祥渊. 湘西北沅麻盆地红层中发现的恐龙足印化石. 湖南地质, 1982, 1: 57–58, 104]. Google Scholar

[37] Li J J, Bai Z Q, Wei Q Y. The Lower Cretaceous Dinosaur Footprints in Otog Qi, Inner Mongolia (in Chinese). Beijing: Geological Publishing House, 2011. 1–109 [李建军, 白志强, 魏青云. 内蒙古鄂托克旗下白垩统恐龙足迹. 北京: 地质出版社, 2011. 1–109]. Google Scholar

[38] Olsen P E, Smith J B, McDonald N G. Type material of the type species of the classic theropod footprint genera Eubrontes, Anchisauripus, and Grallator (Early Jurassic, Hartford and Deerfield Basins, Connecticut and Massachusetts, U.S.A.). J Vertebr Paleontol, 1998, 18: 586-601 CrossRef Google Scholar

[39] Li J J, Bai Z Q, Lockley M G, et al. Dinosaur tracks in Wulatezhongqi, Inner Mongolia (in Chinese). Acta Geol Sin, 2010, 84: 723–742 [李建军, 白志强, Lockley M G, 等. 内蒙古乌拉特中旗恐龙足迹研究. 地质学报, 2010, 84: 723–742]. Google Scholar

[40] Sullivan C, Hone D W E, Cope T D, et al. A new occurrence of small theropod tracks in the Houcheng (Tuchengzi) formation of Hebei Province, China. Vertebr Palasiat, 2009, 47: 35–52. Google Scholar

[41] Paik I S, Kim H J, Lee Y I. Dinosaur track-bearing deposits in the Cretaceous Jindong formation, Korea: Occurrence, palaeoenvironments and preservation. Cretac Res, 2001, 22: 79-92 CrossRef Google Scholar

  • Figure 1

    The comprehensive column of Huangyangquan Reservoir tracksite in Urho. (a) The photograph and comprehensive column of Huangyangquan Reservoir tracksite; (b) comprehensive column of Lower Cretaceous in Urho (Young et al.[18])

  • Figure 2

    The track distribution map in Huangyangquan Reservoir, Urho. (a) The distribution photograph of footprints (in oblique view); (b) close-up of each footprint; (c) outline drawings of each footprint (in over-head perspective)

  • Figure 3

    The photograph, cast and outline drawings of A. niui ichnosp. nov. (scale bar=20 cm). (a) The holotype (field number, T1-3R and cast number, IVPP CV 26286.1); (b) the paratype (field number, I-1R and cast number, IVPP CV 26286.2); (c) a referred specimen (field number, I-2R and cast number, IVPP CV 26286.3)

  • Figure 4

    The main genera of Eubrontidae. (a) A. pulvinicalx, the holotype, Early Cretaceous, Japan[33]; (b) A. robustus, the holotype, Early Cretaceous, Otog Qi, Inner Mongolia[37]; (c) Eubrontes giganteus, Early Jurassic, the holotype, Massachusetts USA[38]; (d) Chapus lockleyi, the holotype, Early Cretaceous, Otog Qi, Inner Mongolia[35]; (e) Zizhoupus wangi, the holotype, Middle Jurassic, Zizhou, Shaanxi[12]; (f) Hunanpus jiuquwanensis, the holotype, Late Cretaceous, Xiangxi, Hunan[36]; (g) Changpeipus carbonicus, the holotype, Early or Middle Jurassic, Huinan, Jilin[5]; (h) Eubrontidae igen. et isp. indet. Late Jurassic, Chengde, Hebei[16]; (i) A. niui ichnosp.nov., the holotype, Early Cretaceous, Urho, Xinjiang; (j) A. pulvinicalx, Early Cretaceous, Urho, Xinjiang

  • Figure 5

    The photographs, casts and outline drawings of A. pulvinicalx in the Huangyangquan Reservoir, Urho (Scale bar=10 cm). (a) Referred specimen (field number, T2-5R and cast number, IVPP CV 26286.4); (b) referred specimen (field number, T2-6L and cast number, IVPP CV 26286.5)

  • Figure 6

    The symmetrical ripple marks and invertebrate traces in the Huangyangquan Reservoir, Urho. (a) The symmetrical ripple marks and invertebrate trace 2; (b) invertebrate trace 1. The red arrows indicate the invertebrate traces

  • Table 1   Table 1 The parameters of A. niui ichnosp. nov.

    足迹编号

    足迹

    Ⅱ-Ⅲ-Ⅳ

    趾垫式

    趾间角

    趾尖三角形

    步长

    长(cm)

    (cm)

    宽/长

    长(cm)

    宽(cm)

    Ⅱ-Ⅲ-Ⅳ

    Ⅱ-Ⅲ

    Ⅲ-Ⅳ

    Ⅱ-Ⅳ

    (cm)

    (cm)

    长/宽(M)

    单步长

    (cm)

    复步长

    (cm)

    步幅角

    T1-1L

    45.0

    40.0

    0.89

     

    T1-2L

    45.0?

    40.0

    0.89?

    26.0?-31.0?-20?

    4.0-6.0-8.0

    3-3-2

    30.74°

    29.17°

    59.91°

    12.0

    38.7

    0.31

    328

     

    T1-3R

    56.0

    42.0

    0.75

    30.0-30.0-20.0

    7.8-9.0-8.0

    28.70°

    26.64°

    55.34°

    14.0

    38.0

    0.37

    164

    162.0°

    T1-4L

    52.0?

    44.0

    0.85?

    20.9-35.0?-20.0

    7.5-7.5-7.0

    44.21°

    34.28°

    78.49°

    15.0

    42.5

    0.35

    180

    336

     

    I-1R

    47.0

    31.0

    0.66

    25.0-26.0-22.0

    7.0-6.4-7.0

    3-3-2

    24.00°

    25.00°

    49.00°

    10.0

    29.0

    0.34

     

    I-2R

    41.0

    30.0

    0.73

    23.5-26.0-22.5

    9.0-8.5-7.5

    3-3-2

    8.96°

    24.80°

    33.76°

    10.0

    30.0

    0.33

     

    I-3

    30.0

    26.0

    17.0-6.0-15.0

    8.0-3.0-7.5

    42.39°

    7.9

    22.8

    0.35

     

    I-4

    16.0

    6.0

     

  • Table 2   Table 2 The divarication angles between digits of A. pulvinicalx and A. robustus

    亚洲足迹

    趾间角

    Ⅱ-Ⅲ

    Ⅲ-Ⅳ

    Ⅱ-Ⅳ

    跟垫亚洲足迹[33]

    22.5°

    27.5°

    50.0°

    跟垫亚洲足迹[33]

    31.0°

    28.0°

    59.0°

    跟垫亚洲足迹[33]

    18.0°

    32.0°

    50.0°

    跟垫亚洲足迹[33]

    25.0°

    17.0°

    42.0°

    粗壮亚洲足迹[37]

    18.0°

    30.0°

    48.0°

  • Table 3   Table 3 The paramaters of A. pulvinicalx in the Huangyangquan Reservoir, Urho

    足迹编号

    足迹

    Ⅱ-Ⅲ-Ⅳ

    趾垫式

    趾间角

    趾尖三角形

    步长

    长(cm)

    (cm)

    宽/长

    长(cm)

    宽(cm)

    Ⅱ-Ⅲ-Ⅳ

    Ⅱ-Ⅲ

    Ⅲ-Ⅳ

    Ⅱ-Ⅳ

    (cm)

    (cm)

    长/宽(M)

    单步长

    (cm)

    复步长

    (cm)

    步幅角

    T2-5R

    21.0

    18.0

    0.86

    11.0-18.0-13.0

    3.0-1.0-2.5

    ?-3-?

    24.81°

    22.75°

    47.56°

    8.0

    17.5

    0.46

     

    T2-6L

    27.0

    20.0

    0.74

    14.0-20.0-14.0

    4.0-4.0-4.1

    3-3-3

    22.60°

    28.81°

    51.40°

    9.1

    16.9

    0.54

    83.2

    172.0°

    T2-7R

    18.0

    10.0

    12-?-?

    3.5-3.0-?

    76.5

    160

     

    T3-8L

    24.0

    20.0

    0.83

    10.0-14.0-10.0

    4.0-4.0-3.0

    55.14°

    24.16°

    79.30°

    6.0

    18.5

    0.32

     

    T3-9R

    25.0

    18.0

    0.72

    11.0-14.0-10.0

    4.0-4.0-3.0

    3-3-2?

    26.33°

    20.30°

    46.63°

    7.0

    16.0

    0.44

    81.5

     

Copyright 2020  CHINA SCIENCE PUBLISHING & MEDIA LTD.  中国科技出版传媒股份有限公司  版权所有

京ICP备14028887号-23       京公网安备11010102003388号