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Abstract Internetware is envisioned as a new software paradigm for software development in platforms such

as the Internet. The reliability of the developed software becomes a key challenge due to the open, dynamic and

uncertain nature of such environment. To make the development more reliable, it is necessary to evaluate the

trustworthiness of the resource providers or potential working partners. To this end, we propose a novel trust

inference approach to evaluating the trustworthiness of potential partners to guide the software development in

Internetware. The main insight of our approach is to employ the self-assessment information in order to improve

the trust inference accuracy. Especially, we first extend the balance theory and the status theory from social

science to incorporate self-assessment, and then propose a machine learning framework to extract several features

from the extended theories and infer trustworthiness scores based on these features. Experimental results on a

real software developer network show that the self-assessment information truly helps to improve the accuracy

of trust inference, and the proposed SelfTrust model is more accurate than other state-of-the-art methods.
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1 Introduction

The explosive development of the WWW technology makes the Internet the biggest interactive on-line

community, where Internetware software and systems are developed and deployed based on the interac-

tions between users who are geographically away from each other. The Internet platform is known to be

open, dynamic and uncertain, which allows the existence of selfish or even malicious service providers;

therefore, finding the trustworthy partners in such environment becomes a key challenge to the reli-

ability of the systems [1–3]. To make the development more reliable, it is necessary to evaluate the

trustworthiness of the resource providers or potential working partners. In literature, many trust infer-

ence approaches have been proposed to help participants to evaluate the trustworthiness of the service

providers [4,5]. Similar trust inference is also proposed in many other Web-based applications including

e-commerce [6], peer-to-peer networks [7], and mobile ad hoc networks [8].
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Over the years, the existing approaches for trust inference are mainly based on the transitivity prop-

erty [9] of trust, which basically means that if Alice trusts Bob and Bob trusts Carol, Alice would also

trust Carol to a certain extent. Typically, these methods would take the existing trust ratings as input,

and output a numerical score to indicate how much a trustor should trust a trustee. However, the input

trust ratings as well as the output trustworthiness scores could imply different meanings for different

users. This is also supported by social science where researchers have found that trust varies subjectively

as a result of individual predispositions (i.e., one’s inclination to take risks, degree of tolerance of poten-

tial disappointment, etc.) [10]. Therefore, to improve the accuracy of trust inference, it is necessary to

incorporate individual personality into the process and tailor the inference result for each user.

In this paper, we take into consideration the self-assessment information to capture individual dif-

ferences. Specifically, our approach is derived from the well-known social balance theory [11,12] and

status theory [13]. Both of these two theories are proposed to model the attitude between human be-

ings, and thus they are applicable in modeling trust which is a subcategory of attitude. To incorporate

self-assessment, however, we need to make some extensions on the theories. For the balance theory, we

first redefine the link signs by comparing the original trust rating to user’s self-assessment. Then, we

further employ the low-rank structure [14] of signed social networks for self-assessment leveraged trust

inference. For the status theory, we extend the theory to the numerical setting, and take self-assessment

into account by defining the status gap. The rational behind these extensions is that while trust rat-

ings in trust networks signify how a user thinks of others, self-assessment indicates how the user thinks

of himself/herself. Therefore, the difference between these thoughts could better reflect the attitude in

balance theory and status theory. Finally, we derive our model by combining balance theory and status

theory under an unified framework where several features are extracted from the extended theories.

The main contributions of this paper are as follows:

1) We extend the social balance theory and status theory to incorporate self-assessment in the context

of trust inference. Our method could be applied in Internetware as well as many other Web-based

applications.

2) Experiment results on a real software developer network show that the self-assessment truly helps to

improve the accuracy of trust inference, and the proposed approach is more accurate and more effective

than other state-of-the-art methods.

The rest of the paper is organized as follows. Section 2 presents the problem definition. Section 3

describes the proposed self-assessment leveraged SelfTrust model, which extends weak balance theory

and status theory, and then combines them. Section 4 presents the experimental results. Section 5 covers

related work, and Section 6 concludes the paper.

2 Problem definition

In this section, we define the trust inference problem which incorporates the self-assessment information.

Specifically, we first review the objective trust inference problem where the goal is to infer a unique

trustworthiness score for each trustee. Then, we present the basic subjective trust inference problem

whose goal is to infer a pairwise trustworthiness score for each trustor-trustee pair. Finally, we define the

problem in this research, which further incorporates the self-assessment into the basic subjective trust

inference problem.

2.1 Notations

We first list the notations we use throughout the paper. We use R to denote the historical ratings, where

R(i, j) is the trust rating from user i to user j. In this work, we adopt the definition where trust is

defined as the subjective probability by which an individual expects that another individual will perform

well on a given action. As a result, R(i, j) could range from 0 to 1. 0 means no trust and 1 means full

trust. When discussing the extensions on the balance theory, we will transform the unsigned trust rating

to its signed version, and also transform the directed trust network into its undirected version. We use
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R̃(i, j) to denote the trust ratings after the first transformation, and we use R(i, j) to denote the trust

ratings after the second transformation. As for the self-assessment, we denote it with S, where S(i) is the
self-assessment of user i. We assume that the goal of trust inference is to infer the unseen trustworthiness

score from the user u to another user v, where u is the trustor and v is the unknown trustee to u.

2.2 Objective trust inference

Some trust inference algorithms aim at computing an objective trustworthiness score for each node in

the network. Such objective metrics are suitable in the environments where each node has a fixed and

objective trustworthiness score. For example, in peer-to-peer networks, such objective trustworthiness

score indicates the probability by which the node would provide non-polluted files [7,15].

Typically, the input of trust inference is the historical feedback of previous interactions, and the output

could be a continuous trust value with higher value indicating more trustworthiness. Based on such input

and output, we define objective trust inference as the method to evaluate a trustee’s trustworthiness

score, where the score indicates to what extent all the trustors can rely on the trustee on performing a

given action. The objective trust inference problem could be defined as:

Definition 1. Objective Trust Inference. Given: historical ratings R, and a trustee v; Find: the

estimated objective trustworthiness score of v for all trustors.

2.3 Subjective trust inference

With the development of the social network based applications, researchers begin to realize the importance

of the subjectivity property of trust, and many subjective trust inference algorithms have been proposed

including [16–22]. In contrast to objective trust inference, subjective trust inference recognizes that

different trustors can form different opinions on the same trustee, and thus aims to provide pairwise trust

inference result for each trustor-trustee pair [23].

Compared to the goal of a unique trustworthiness score for each trustee in objective trust inference,

the goal of subjective trust inference is to evaluate a trustee’s trustworthiness score for a given trustor,

where the score indicates to what extent the given trustor can rely on the trustee on performing a given

action. More formally, the basic subjective trust inference problem can be defined as follows:

Definition 2. Basic Subjective Trust Inference. Given: historical ratings R, a trustor u, and a trustee

v; Find: the estimated subjective trustworthiness score of v for trustor u.

In this work, we also put our focus on the subjective trust inference problem, and aim to incorporate

the self-assessment information to further improve the inference accuracy. By considering self-assessment,

the inference results will be adjusted based on individual user’s personality. Formally, the trust inference

problem in this paper can be defined as follows:

Definition 3. Subjective Trust Inference with Self-assessment. Given: historical ratings R, users’ self-

assessment S, a trustor u, and a trustee v; Find: the estimated subjective trustworthiness score of v for

trustor u.

3 The SelfTrust model

In this section, we propose our approach to solve the problem defined in Definition 3. Specifically, we

first discuss how to incorporate self-assessment into the balance theory and status theory, respectively.

Then, we combine the extended balance and status theories together in a generic framework, SelfTrust.

3.1 Extending balance theory

In this study, we consider two outputs from this theory: one is from the theory output in local scale (see

Figure 1), and the other one is from its structure character in global scale.

 https://engine.scichina.com/doi/10.1007/s11432-013-5005-4
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Figure 1 Illustration for weak balance theory in directed signed networks. Solid line indicates positive relationship and

dashed line indicates negative relationship. The link between trustor u and trustee v is the theory output. The three triads

in the figure do not have theory output because they fall into the fourth principle.

3.1.1 Local scale of theory output

Balance theory or the structural balance theory is proposed to model triadic social relationships in signed

networks based on sentiments [11,24]. By categorizing the sentiments into two class, positive (friend)

and negative (enemy), the balance theory can be interpreted by four principles: “the friend of my friend

is my friend”, “the enemy of my friend is my enemy”, “the friend of my enemy is my enemy”, and “the

enemy of my enemy is my friend”. These principles require that the number of positive signs should be

odd in each triad. An extension of balance theory is proposed [12] by deleting the forth principle, and

thus we have the definition of weak-balanced signed network:

Definition 4 (Weak-balanced signed network [12]). A signed network is weak balanced if and only if

there is no triad that contains two positive links and one negative link in the network.

It has been found that this extended theory (weak balance theory) works better in trust-based social

networks [25], and thus we will focus on this theory instead of the original balance theory.

We first interpret weak balance theory in directed signed networks, as shown in Figure 1. Unlike the

undirected version in [24], we interpret weak balance in directed version because trust is asymmetric in

nature, i.e., v trusts u cannot imply that u also trusts v. Figure 1 shows that all the triads that have

output obey the above weak balance definition, i.e., no triad contains two positive links and one negative

link. The triads that have output also follow the first three principles. For example, in the second row of

the figure, the three triads that have output follow the rules “the friend of my friend is my friend”, “the

friend of my enemy is my enemy”, and “the enemy of my friend is my enemy”, respectively. The three

triads in the figure do not have theory output because they fall into the fourth principle.

Next, we extend weak balance theory to deal with the unsigned trust networks with continuous trust

ratings. Before that, we first give an illustrative example to explain the connection between self-assessment

and balance theory for trust inference. Suppose a software developer Alice has worked with Bob in an

Internetware environment. Based on the working experiences, Alice rates Bob as 0.5 which indicates the

performance of Bob in the opinion of Alice. However, this rating alone does not necessarily convey the

attitude from Alice to Bob. On the other hand, if we also know that Alice rates herself as 0.7, then we

can know that the attitude from Alice to Bob is actually negative. This negative sentiment, instead of

the rating from Alice to Bob, should be used as the input of the balance theory. Consequently, we need

to generate a signed trust network where each sign indicates the positive/negative sentiment. We achieve

so by redefining the link sign R̃(i, j) based on self-assessment as follows:
 https://engine.scichina.com/doi/10.1007/s11432-013-5005-4
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Definition 5 (Sign generation in trust networks). R̃(i, j) is positive if R(i, j) − S(i) � 0; R̃(i, j) is

negative if R(i, j)−S(i) < 0; where R(i, j) is the historical trust rating from user i to user j and S(i) is
the self-assessment of user i.

Based on the above sign generation definition, we can generate a signed network from the trust network.

Then, we can apply the weak balance theory, which is illustrated in Figure 1, to the generated signed

network. We will use the theory output of the generated signed network as features in our model.

3.1.2 Global scale of network structure

As we mentioned above, we use another output of balance theory by employing the low-rank structure

of balanced social networks. To simplify discussion, we first transform the directed signed network into

its undirected version by the following rules:

Definition 6 (Direction degeneration in trust networks). R(i, j) (or equivalently, R(j, i)) is positive if

R̃(i, j) is positive and R̃(j, i) is not negative, or R̃(j, i) is positive and R̃(i, j) is not negative; R(i, j) (or

equivalently, R(j, i)) is negative in all other cases.

Please note that the second rule includes the case where R̃(i, j) is negative and R̃(j, i) is not positive,

or analogously R̃(j, i) is negative and R̃(i, j) is not positive. It also includes the case where R̃(i, j) and

R̃(j, i) are of opposite signs though this is in fact rare in real datasets. The following theorems are all

based on such transformed undirected signed networks unless otherwise specified.

For weak balance theory, the constraints on local triads could imply the following global structure:

Theorem 1 (Global “weak balance” structure [12]). A complete signed network is weakly balanced if

and only if all links are positive, or the nodes can be divided into several groups such that within-group

links are positive and between-group links are negative.

In other words, weak balance theory can induce a graph with several clusters where links within clusters

are all positive and links between clusters are all negative. Clustering is also a common phenomenon in

social networks [26]: people with similar interests tend to trust each other and form clusters. As a result,

weak balance theory actually reflects the underlying network structure in global scale by regularizing

balance constraints on local triads. We apply such connection and connect weak balance theory with

low-rank approximation. Firstly, we define weak-balanced trust network as:

Definition 7 (Weak-balanced trust network). A trust network is weak balanced if and only if there is no

triad containing two positive links and one negative link in the resulting network which is derived from

the sign generation in Definition 5 and the direction degeneration in Definition 6.

Then, we have the following theorem:

Theorem 2 (Low-rank structure of trust networks). By applying the sign generation in Definition 5

and the direction degeneration in Definition 6 on a complete weak-balanced trust network, the adjacency

matrix of the resulting network has rank k for k > 2 where k is the number of clusters in the complete

weak-balanced trust network.

Proof. Theorem 3 in [14] has already shown that the adjacency matrix of a complete weakly-balanced

signed network has rank k for k > 2. Therefore, based on Definition 7, we only need to show that after

applying the sign generation and direction degeneration on a complete weak-balanced trust network, the

resulting network is a complete signed network. First, by Definition 5, after sign generation on a complete

directed graph with continuous values on the links, we will have a complete directed graph with signs on

the links; second, the transformation from directed graph to undirected graph contains all the possible

combinations of bidirectional links between two users. Thus, by applying the sign generation and the

direction degeneration, the resulting network is a complete signed network, which completes the proof.

 https://engine.scichina.com/doi/10.1007/s11432-013-5005-4
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Figure 2 Illustration for status theory in directed signed networks. Solid line indicates positive relationship and dashed

line indicates negative relationship. The link between trustor u and trustee v is the theory output. The triads in the figure

do not have theory output because the transitivity property cannot apply.

The above theorem shows that a complete weak-balanced network is of low rank. Consequently, it

is rational to view trust inference problem as low-rank matrix completion problem, i.e., filling those

unknown trust relationships so that the resulting network is still weak balanced. Specifically, we apply

low-rank approximation to infer the unknown trust as follows:

min
P ,Q

∑

(i,j)∈R
(R(i, j)− S(i)− P (i, :)Q(j, :)′)2 + λ(‖P ‖2F + ‖Q‖2F ), (1)

where λ is a regularization parameter, ‖ ·‖F is the Frobenius norm of the matrices and both P and Q are

of low rank k, which is the possible number of clusters in the network. We could view each row in P (Q)

as the relationships between the trustor (trustee) and the k clusters. As a result, such relationships can

be aggregated to form the trustworthiness between two users. In the above formulation, we adopt square

loss instead of the sign loss defined in [14] because of the continuous nature of trust network. In addition,

the self-assessment information is considered by deleting S(i) before applying low-rank approximation to

compute P and Q. We will also use the linear combination of P and Q as features in our model.

3.2 Extending status theory

Compared to balance theory, status theory is relatively new and barely visited. Basically, a positive link

from user i to user j in status theory indicates that i believes j has a higher status than i, and a negative

link from i to j analogously implies that i believes j has a lower status [13]. As a result, a positive link

from i to j is equal to a negative link from j to i. Moreover, the status is transitive: if i has a higher

status than j, and j has a higher status than w, then i has a higher status than w. By using such

transitivity property, we illustrate the theory output of status theory in Figure 2. As we can see in this

figure, all the triads that have theory output follow the status transitivity. Take the second triad in the

second row as an example. In this example, u thinks w has a higher status than u, and v thinks w has a

lower status than v (or equivalently, v thinks v has a higher status than w). The theory therefore infers

that v has a higher status than u which is a positive link from u to v. The triads in the figure do not

have theory output because the transitivity property cannot apply.

 https://engine.scichina.com/doi/10.1007/s11432-013-5005-4
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Figure 3 Illustration for our extended status theory for directed trust networks.

Different from the balance theory which is originally proposed for undirect signed networks, status

theory is devised for directed signed networks. Although we can still use the signed network generated

by Definition 5, we choose to take a further step by introducing the concept of status gap. Essentially,

status gap is a quantification to measure how much user i thinks user j is higher or lower than i in

status. Although directly using R(i, j) as the gap is one way to quantify this measurement, R(i, j) is

usually a non-negative probability in trust networks resulting in only half of the triads available in trust

networks. In addition, it would be more reasonable if we incorporate self-assessment into status gap,

because trust rating indicates how the user thinks of others and self-assessment reflects how the user

thinks of himself/herself. Let us revisit the example mentioned before, where a software developer Alice

has worked with Bob in an Internetware environment. In this example, if we only know that Alice rates

Bob as 0.5, we cannot decide whose status is higher in the opinion of Alice. On the other hand, if we also

know that Alice rates herself as 0.7, then we can decide that Alice actually thinks that Bob has a lower

status than herself. In this work, we define status gap as follows:

Definition 8 (Status gap). Given user i and user j, the status gap from i to j is g(i, j) = R(i, j)−S(i),
where R(i, j) is the trust rating from i to j and S(i) is i’s self-assessment.

Based on the above definition, the status gap from user i to user j is the difference between the rating

that i gives to j and the rating that i gives to himself/herself. Given the trust rating R(i, j) and S(i), i
believes its status is g(i, j) higher than j if g(i, j) > 0, −g(i, j) lower than j if g(i, j) < 0, and equal to j

if g(i, j) = 0.

One advantage of status gap is that we can now infer a numerical theory output for each triad in

Figure 2. The reason is that, instead of only the link sign, we now know the exact status gap on each

link and the status gap is additive. To further illustrate our extended status theory, let us consider

the four types of triads that are possibly available in trust network as shown in Figure 3. Take the

first triad as an example. If g(u,w) = 0.3 and g(w, v) = −0.1, then the status gap between u and v is

g(u, v) = g(u,w)+ g(w, v) = 0.2. In addition, the four types of triads in the figure could derive all the 16

triads in Figure 2, depending on the sign of the status gap. For example, the first triad in Figure 3 will

derive the four triads in the first row of Figure 2 under the conditions of g(u,w) � 0 and g(w, v) � 0,

g(u,w) � 0 and g(w, v) < 0, g(u,w) < 0 and g(w, v) � 0, and g(u,w) < 0 and g(w, v) < 0, respectively.

The output of our extended status theory is summarized in the following theorem:

Theorem 3 (Extended status theory output). Given the status gap in Definition 8, the output R(u, v)

from trustor u to trustee v for the four triads in Figure 3 is computed as R(u,w) + R(w, v) − S(w),
R(u,w) −R(v, w) + S(v), −R(w, u) −R(v, w) + S(u) + S(w) + S(v), and −R(w, u) +R(w, v) + S(u),
respectively.

Proof. Let us first take a look at the first triad in Figure 3. Based on the status gap definition, the

status gap between u and w, w and v is g(u,w) = R(u,w) − S(u) and g(w, v) = R(w, v) − S(w),
respectively. Then, based on the additive property of status gap, g(u, v) can be computed as g(u, v) =

g(u,w) + g(w, v) = R(u, v) − S(u) = R(u,w) − S(u) + R(w, v) − S(w), and thus R(u, v) = R(u,w) +

R(w, v) − S(w). Similarly, for the the rest three triads, we can get the results by substituting g(i, j) as

R(i, j) − S(i) into the following three formulae: g(u, v) + g(v, w) = g(u,w), g(w, u) + g(u, v) = g(w, v),

and g(u, v) = −g(w, u)− g(v, w), respectively.

Based on the above theorem, our extended status theory could output a numerical value for each triad

in the trust network. In the next subsection, we will use these numerical values as features in our model.

 https://engine.scichina.com/doi/10.1007/s11432-013-5005-4
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3.3 The SelfTrust learning framework

To infer unknown trustworthiness scores in trust networks, we extract a collection of features from the

extended balance theory and status theory, and then apply logistic regression to combine these features.

Let us first consider the two outputs from the extended balance theory. For the first local output,

we only know the sign of the output for each triad. In view of this, we could count the number of the

nine triads with theory output in Figure 1, and use the number as features. The intuition behind these

features is that each of the nine triads can provide evidence about the sign from u to v. However, in

our continuous trust inference problem setting, such a sign is not sufficient. We further incorporate the

self-assessment of u as an additional feature since our sign generation in Definition 5 depends on user’s

self-assessment. Consequently, the number of the nine triads for each link 〈i, j〉 in the network as well

as the self-assessment of i can be encoded as a 10-dimensional vector vb, and this vector is used as the

features in our model.

For the second output of extended balance theory, based on (1), we could compute the low-rank

matrices P and Q. The estimated trustworthiness score from u to v could then be computed as

R(u, v) = P (u, :)Q(v, :)′ + S(u). (2)

Please note that the self-assessment information is added back to adjust the inference result. We denote

the resulting score by sb, and directly use it as the feature in our model. Overall, we have 11 features

from our extended balance theory, i.e., the 10-dimensional vector vb and the scalar sb.

As for the extended status theory, we could compute the numerical output for each triad in Figure 3

as summarized in Theorem 3. Given link 〈i, j〉, we could then derive a set of numerical values for each of

the triad in the figure. Therefore, we could use more meaningful features in our extended status theory,

instead of simply using the number of triads as features in the extended balance theory. Here, each

output for each triad can be seen as a piece of evidence that could be used for trust inference. Then, the

amount of evidence, the disposition of evidence, and the variance of evidence could all be meaningful.

For example, if we have more evidence, we would be more confident about the trust decision; if all the

evidence shows that someone is trustworthy, we would probably trust this person; if some of the evidence

shows that someone is trustworthy while other evidence shows the opposite, we might be hesitant on the

decision. To capture these important intuitions about evidence, we consider the sum, average, maximum,

and minimum characters for each set of numerical values that belong to a certain triad. The combination

of four characters and four triads results in a 16-dimensional vector vs, and we use this vector as the

features in our model.

In total, we extract 27 features from our extended balance theory and status theory, and we combine

these features under logistic regression which learns a model in the following form:

R(u, v) = exp

(
1

1 + exp[w0 +Σ10
i=1wivb(i) + w11sb +Σ27

i=12wivs(i − 11)]

)
, (3)

where wi are the coefficients to be estimated, and vb, sb, and vs are the features for trustor-trustee

pair 〈u, v〉. This trust inference algorithm is termed SelfTrust in this paper, as it incorporates the self-

assessment information during the learning process.

4 Experiments

In this section, we evaluate the proposed SelfTrust method on a real dataset of software developer network.

The goal of our experiments is to show that 1) self-assessment truly helps to improve the accuracy of

trust inference, and 2) our proposed method is more accurate than other state-of-the-art methods.

 https://engine.scichina.com/doi/10.1007/s11432-013-5005-4
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Table 1 High level statistics of advogato dataset

Nodes Edges Avg. degree Avg. clustering [26] Avg. diameter [27] Date

5 428 51 493 19.0 0.31 4.82 2011-06-23
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Figure 4 The degree distribution of advogato. (a) In-degree distribution of advogato; (b) Out-degree distribution of

advogato.

4.1 Dataset

The data we experiment with is the advogato dataset, which is a snapshot on June 23, 2011 containing

5 428 nodes and 51 493 edges1). Advogato is an online community and social networking site dedicated

to free software development, where users could certify and rate each other. This dataset is applied in

this study for two reasons. The first reason is that, in addition to rating others, many users in advogato

network rate themselves, and these self-ratings provide the self-assessment information. The other one

is that, advogato is a trust-based social network and it contains multilevel trust assertions. Specifically,

there are four levels of trust assertions in the network, i.e., ‘Observer’, ‘Apprentice’, ‘Journeyer’, and

‘Master’. These assertions can be mapped into real numbers in [0,1]. In our experiments, we map

‘Observer’, ‘Apprentice’, ‘Journeyer’, and ‘Master’ to 0.1, 0.4, 0.7, and 0.9, respectively. For those users

who do not provide self-ratings, we set the them at 0.5 by default.

The statistics and the degree distribution of the dataset are shown in Table 1 and Figure 4, respectively.

It is obvious that, the advogato graph is a typical small-world social network because it exhibits the

properties of power-law degree distribution, high clustering coefficient, and low diameter [28].

4.2 Experimental setup

To evaluate the performance of the proposed method, we compare SelfTrust with several state-of-the-art

trust inference algorithms, including HCD [14], MoleTrust [17], and GKRT [16]. Moreover, while trust

inference algorithms are usually unsupervised, researchers have found that supervised method is usually

better than unsupervised one in link prediction accuracy [29]. Thus, we also compare SelfTrust with the

supervised method LHK [24]. Specifically, the comparisons are conducted on three groups of features

(i.e., weak balance, status, and all triads) in LHK, and we denote them by LHK-1 (for weak balance),

LHK-2 (for status), and LHK-3 (for all triads), respectively.

For evaluation metrics, we conduct 5-fold cross validation on the dataset, and apply both the root

mean squared error (RMSE) and the mean absolute error (MAE) between the estimated and the true

trustworthiness scores: RMSE =
√∑n

i=1(x̂i − xi)2/n, MAE =
∑n

i=1 |x̂i − xi|/n, where n is the number

of trust ratings, xi is the true trustworthiness scores, and x̂i is the estimated trustworthiness scores by

SelfTrust.

1) http://www.trustlet.org/wiki/Advogato dataset.
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Figure 5 Prediction error of SelfTrust with different rank k.

Table 2 The effect of self-assessment on the three components of SelfTrust. Self-assessment truly improves the inference

accuracy in all three components, where component 1 is local scale of theory output from extended balance theory, compo-

nent 2 is global scale of network structure from extended balance theory, and component 3 is theory output from extended

status theory

RMSE MAE

Component 1: without self-assessment 0.2340 0.1807

Component 1: with self-assessment 0.2190 0.1690

Component 2: without self-assessment 0.2546 0.1790

Component 2: with self-assessment 0.2091 0.1514

Component 3: without self-assessment 0.2067 0.1594

Component 3: with self-assessment 0.2036 0.1589

4.3 Experimental results

To show the performance of the proposed method, we first examine the impact of the parameter k in

SelfTrust (the rank k in (1)). This k indicates the possible number of clusters in the underlying social

network of the dataset. The impact of k is shown in Figure 5. Obviously, both RMSE and MAE stay

stable when k > 10, and the best result comes from k = 2. This indicates that there are possibly two big

clusters in the advogato network, and we set k = 2 in our experiments unless otherwise specified.

Then, we show the effect of self-assessment by presenting the RMSE and MAE results on the three

components in SelfTrust, i.e., the two outputs from extended weak balance theory and the one output

from extended status theory. For comparison, we delete the self-assessment in the extended theories,

and the results are shown in Table 2. It is observed that, self-assessment truly improves the inference

accuracy in all three components. Specifically, in the second component from extended balance theory,

incorporating self-assessment achieves 17.9% and 15.4% improvement in RMSE and MAE, respectively.

Next, we compare the effectiveness of SelfTrust with the unsupervised methods HCD, MoleTrust, and

GKRT, as shown in Table 3. It is observed from the table that SelfTrust significantly outperforms all

the compared methods in terms of both RMSE and MAE. MoleTrust and GKRT perform poorly as they

infer trust solely based on the paths from trustors to trustees. SelfTrust also outperforms HCD by 40.5%

in RMSE and 40.4% in MAE. The reason is that while HCD makes use of the global structure of social

networks, we also consider two other groups of features from extended balance theory and status theory.

Finally, we compare SelfTrust with the supervised method LHK-1, LHK-2, and LHK-3. We first show

the result in Table 4. As we can see, SelfTrust performs better than all compared methods, and it achieves

up to 19.6% improvement in prediction error compared to the three variants from LHK. Furthermore, we

evaluate how the prediction error changes as more information is available. As shown in Figure 6, we plot

the prediction results against the embeddedness threshold, where embeddedness is the number of common
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Table 3 Comparison of SelfTrust with unsupervised methods HCD, MoleTrust, and GKRT. SelfTrust performs best

RMSE MAE RMSE improvement of SelfTrust MAE improvement of SelfTrust

SelfTrust 0.1897 0.1377

HCD 0.3188 0.2309 40.5% 40.4%

MoleTrust 0.4093 0.2758 53.7% 50.1%

GKRT 0.6343 0.5909 70.1% 76.7%

Table 4 Comparison of SelfTrust with supervised methods LHK-1, LHK-2, and LHK-3. SelfTrust performs best

RMSE MAE RMSE improvement of SelfTrust MAE improvement of SelfTrust

SelfTrust 0.1897 0.1377

LHK-1 0.2175 0.1698 12.8% 18.9%

LHK-2 0.2201 0.1712 13.8% 19.6%

LHK-3 0.2062 0.1590 8.0% 13.4%
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0.10
0 1 2 3 4 5 6 7 8 9 10

RMSE of SelfTrust
RMSE of LHK-3
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MAE of LHK-3

Minimum embeddedness threshold

Figure 6 Prediction error of trust inference algorithms with different levels of embeddedness. The x-axis represents the

embeddedness threshold. We can see that SelfTrust consistently gives us lower error than LHK-3 for all thresholds on both

RMSE and MAE.

neighbors and thus it indicates the amount of available information for prediction. For clarity, we only

compare the result of SelfTrust with LHK-3 which is the best among the three compared methods. As

we can observe from the figure, SelfTrust consistently gives us lower error than LHK-3 on both RMSE

and MAE regardless of the embeddedness. Moreover, it is also observed that SelfTrust performs better

as more information is available.

5 Related work

In this section, we briefly review related trust inference methods from literature.

For the trust inference models that employ the transitivity property, we first divide them into two

categories: recommender-based approaches and flow-based approaches.

Recommender-based approaches focus on measuring the recommendation credibility of available rec-

ommenders. For example, PeerTrust system for peer-to-peer e-commerce environment proposes two

measures for the recommendation credibility, namely, reputation-based measure and similarity-based

measure [30]. In mobile ad-hoc networks, Buchegger et al. [31] use a deviation test to eliminate un-

reliable recommendations from the final computation of trust. In multi-agent systems, Sabater et al.

determine the recommendation credibility by applying fuzzy logic [32] on the social relationships between

the recommenders and the trustee [33]. Travos system in multi-agent system evaluates the recommen-
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dation credibility by tracking the past recommendation behavior of recommenders [34]. The trust value

is then computed based on the recommendation content and the credibility of these recommendations.

Other recommender-based approaches include [6,8,35].

Later, with the popularity and availability of underlying social networking structures, researchers begin

to explore flow-based approaches which compute trust values by finding a set of connected paths or a

connected component from the trustor to the trustee. Trust then flows from the trustor to the trustee

over these paths or components. For example, in peer-to-peer networks, EigenTrust assumes that trust

is recursively transitive through the network [7]. The EigenTrust algorithm computes global trust values

by calculating the left principal eigenvector of the matrix representing the local trust values. Similar to

EigenTrust, PowerTrust also uses a flow-based trust calculation approach, with special consideration of

the power-law distribution of feedback [36]. In multi-agent system, Wang et al. [19] define two operators

to deal with trust propagation along a path, and trust aggregation among different paths. To deal with

large graphs, MoleTrust first destroys the cycles in the graph to ensure that every node is visited only

once, and then infers the trustworthiness score in a flow manner [17]. To avoid the loss of information,

FlowTrust uses the network flow theory on a connected component instead of finding connected paths [37].

Other flow-based approaches include [16,18,20,38,39].

In addition to the transitivity property which has been widely used by the existing approaches, there

are other properties that could be useful and important for trust inference. In this work, we put our

focus on the self-assessment of users. Particularly, we incorporate such self-assessment information into

two social science theories: the weak balance theory and the status theory. In our work, the balance

theory and status theory are based on the triangle structure, making our approach fall into the category

of recommender-based approaches. Actually, recommender-based approach can be viewed as the special

case of flow-based approach if we fix the trust transitive distance in two steps. Generalizing the theories

to longer distance has been considered by several researchers [25,40], while we leave it as our future work.

In machine learning and data mining domains, there are several pieces of work that focus on edge

sign prediction. For example, Nguyen et al. [41] derive several features from social science theory to

infer trust. However, their method needs the user-item ratings and thus becomes infeasible when such

information is not available. In contrast, our method is solely based on the user-user trust ratings, and

therefore it has a broader applicability. Leskovec et al. [24] formulate the link sign prediction problem

and connect the problem to the theories of balance and status. In our work, we extend the theories to

incorporate self-assessment information so that the personalization property of trust is captured. Hsieh

et al. [14] find the connection between structural balance and low-rank approximation. In our approach,

we also make use of such connection to derive one output from balance theory.

6 Conclusions

In this paper, we have proposed a trust inference approach to evaluating the trustworthiness of poten-

tial partners to guide the software development in Internetware. In the context of trust inference, the

personality of each individual user has significant effect on the trust information to other users. To this

end, we investigate the personalization property of trust by leveraging self-assessment, and based on this,

we propose a trust inference model SelfTrust to infer trust between potential partners. Specifically, we

first extend the balance theory and the status theory to incorporate the self-assessment information, and

then propose a machine learning-based framework to infer the trustworthiness scores. Experiment results

on a real software developer network show that the self-assessment information truly helps to improve

the accuracy of trust inference, and the proposed SelfTrust is more accurate than other state-of-the-

art methods.
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1 Lü J, Ma X, Tao X, et al. Research and progress on Internetware (in Chinese). Sci China Ser E-Inf Sci, 2006, 36:

1037–1080

2 Li L, Wang Y, Lim E P. Trust-oriented composite service selection and discovery. In: Proceedings of the 7th Interna-

tional Joint Conference on Service-Oriented Computing, Stockholm, 2009. 50–67

3 Hang C W, Singh M P. Trustworthy service selection and composition. ACM Trans Auton Adapt Syst, 2011, 6: 5

4 Wang Y, Vassileva J. A review on trust and reputation for web service selection. In: Proceedings of the 27th Interna-

tional Conference on Distributed Computing Systems Workshops, Toronto, 2007. 25–25

5 Jøsang A, Ismail R, Boyd C. A survey of trust and reputation systems for online service provision. Decis Support Syst,

2007, 43: 618–644

6 Jøsang A, Ismail R. The Beta reputation system. In: Proceedings of the 15th Bled Electronic Commerce Conference,

Bled, 2002. 41–55

7 Kamvar S D, Schlosser M T, Garcia-Molina H. The Eigentrust algorithm for reputation management in p2p networks.

In: Proceedings of the 12th International Conference on World Wide Web, Budapest, 2003. 640–651

8 Li F, Wu J. Uncertainty modeling and reduction in MANETs. IEEE Trans Mob Comput, 2010, 9: 1035–1048

9 Golbeck J. Computing and applying trust in web-based social networks. Dissertation for the Doctoral Degree. Uni-

versity of Maryland, 2005

10 Gambetta D. Can we trust trust. In: Gambetta D, ed. Trust: Making and Breaking Cooperative Relations. University

of Oxford Press, 2000. 213–237

11 Cartwright D, Harary F. Structural balance: a generalization of heider’s theory. Psychol Rev, 1956, 63: 277–293

12 Davis J A. Clustering and structural balance in graphs. Hum Relat, 1967, 20: 181–187

13 Leskovec J, Huttenlocher D, Kleinberg J. Signed networks in social media. In: Proceedings of the 28th International

Conference on Human Factors in Computing Systems, Atlanta, 2010. 1361–1370

14 Hsieh C J, Chiang K Y, Dhillon I S. Low rank modeling of signed networks. In: Proceedings of the 18th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Beijing, 2012. 507–515

15 Ayday E, Fekri F. Iterative trust and reputation management using belief propagation. IEEE Trans Dependable Secur

Comput, 2012, 9: 375–386

16 Guha R, Kumar R, Raghavan P, et al. Propagation of trust and distrust. In: Proceedings of the 13th International

Conference on World Wide Web, New York, 2004. 403–412

17 Massa P, Avesani P. Controversial users demand local trust metrics: an experimental study on epinions.com community.

In: Proceedings of the 20th National Conference on Artificial Intelligence, Pittsburgh, 2005. 121–126

18 Ziegler C N, Lausen G. Propagation models for trust and distrust in social networks. Inf Syst Front, 2005, 7: 337–358

19 Wang Y, Singh M P. Trust representation and aggregation in a distributed agent system. In: Proceedings of the 21st

National Conference on Artificial Intelligence, Boston, 2006. 1425–1430

20 Liu G, Wang Y, Orgun M. Trust inference in complex trust-oriented social networks. In: Proceedings of the Interna-

tional Conference on Computational Science and Engineering, Vancouver, 2009. 996–1001

21 Hang C W, Wang Y, Singh M P. Operators for propagating trust and their evaluation in social networks. In: Proceed-

ings of The 8th International Conference on Autonomous Agents and Multiagent Systems, Budapest, 2009. 1025–1032

22 Wang G, Wu J. Multi-dimensional evidence-based trust management with multi-trusted paths. Future Gener Comput

Syst, 2011, 27: 529–538

23 Yao Y, Tong H, Xu F, et al. Subgraph extraction for trust inference in social networks. In: Proceedings of the

IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Istanbul, 2012. 163–170

24 Leskovec J, Huttenlocher D, Kleinberg J. Predicting positive and negative links in online social networks. In: Pro-

ceedings of the 19th International Conference on World Wide Web, Raleigh, 2010. 641–650

25 Yao Y, Xu F, Yang Y, et al. PatTrust: a pattern-based evaluation approach for trust and distrust in Internetware. In:

Proceedings of the 3rd Asia-Pacific Symposium on Internetware, Nanjing, 2011

26 Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393: 440–442

27 Leskovec J, Kleinberg J, Faloutsos C. Graphs over time: densification laws, shrinking diameters and possible explana-

tions. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

Chicago, 2005. 177–187

28 Yao Y, Zhou J, Han L, et al. Comparing linkage graph and activity graph of online social networks. In: Proceedings

of the 3rd International Conference on Social Informatics, Singapore, 2011. 84–97

29 Lichtenwalter R N, Lussier J T, Chawla N V. New perspectives and methods in link prediction. In: Proceedings of

the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington DC, 2010.

243–252

 https://engine.scichina.com/doi/10.1007/s11432-013-5005-4



Yao Y, et al. Sci China Inf Sci October 2013 Vol. 56 108102:14

30 Xiong L, Liu L. Peertrust: supporting reputation-based trust for peer-to-peer electronic communities. IEEE Trans

Knowl Data Eng, 2004, 16: 843–857

31 Buchegger S, Le Boudec J Y. A Robust Reputation System for Mobile Ad-Hoc Networks. Technical Report. KTH

Royal Institute of Technology, Theoretical Computer Science Group, 2004

32 Zadeh L A. Fuzzy logic and approximate reasoning. Synthese, 1975, 30: 407–428

33 Sabater J, Sierra C. Reputation and social network analysis in multi-agent systems. In: Proceedings of the 1st

International Joint Conference on Autonomous Agents and Multiagent Systems, Bologna, 2002. 475–482

34 Patel J, Teacy W T L, Jennings N R, et al. A probabilistic trust model for handling inaccurate reputation sources.

In: Proceedings of the 3rd International Conference of Trust Management, Paris, 2005. 193–209

35 Teacy W T L, Patel J, Jennings N R, et al. Travos: trust and reputation in the context of inaccurate information

sources. Auton Agents Multi-Agent Syst, 2006, 12: 183–198

36 Zhou R, Hwang K. Powertrust: a robust and scalable reputation system for trusted peer-to-peer computing. IEEE

Trans Parall Distrib Syst, 2007, 18: 460–473

37 Wang G, Wu J. Flowtrust: trust inference with network flows. Front Comput Sci China, 2011, 5: 181–194

38 Mui L, Mohtashemi M, Halberstadt A. A computational model of trust and reputation. In: Proceedings of the 35th

Annual Hawaii International Conference on System Sciences, Big Island, 2002. 2431–2439

39 Liu G, Wang Y, Orgun M A. Optimal social trust path selection in complex social networks. In: Proceedings of the

24th AAAI Conference on Artificial Intelligence, Atlanta, 2010. 1391–1398

40 Chiang K Y, Natarajan N, Tewari A, et al. Exploiting longer cycles for link prediction in signed networks. In:

Proceedings of the 20th ACM International Conference on Information and knowledge Management, Glasgow, 2011.

1157–1162

41 Nguyen V A, Lim E P, Jiang J, et al. To trust or not to trust? predicting online trusts using trust antecedent

framework. In: Proceedings of the 9th International Conference on Data Mining, Miami, 2009. 896–901

 https://engine.scichina.com/doi/10.1007/s11432-013-5005-4


