Efficient soluble deep blue electroluminescent dianthracenylphenylene emitters with CIE y ($y \leq 0.08$) based on triplet-triplet annihilation

Ling Peng 1, Jing-Wen Yao 1, Mei Wang, Lin-Ye Wang, Xiao-Lan Huang, Xin-Feng Wei, Dong-Ge Ma *, Yong Cao, Xu-Hui Zhu *

State Key Laboratory of Luminescent Materials and Devices, and Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology (SCUT), Guangzhou 510640, China

Abstract

It has been challenging to develop deep blue organic molecular fluorescent emitters with CIE y ($y \leq 0.08$) based on triplet-triplet annihilation (TTA). Here, we report facilely available dianthracenylphenylene-based emitters, which have a 3,5-di(4-t-butylphenyl)phenyl moiety at the one end and 4-cyanophenyl or 3-pyridyl at the other end, respectively. Both fluorophores show a high glass transition temperature of over 220 °C with a thermal decomposition temperature of over 430 °C at an initial weight loss of 1%. The preliminary characterizations of the organic light-emitting diodes (OLEDs) that utilized these nondoped emitters provided high EQEs of 4.6%–5.9% with CIE coordinates (0.15, 0.07–0.08). The analysis of the EL transient decay revealed that TTA contributed to the observed performance. The results show that the new emitters are attractive as a potential TTA-based host to afford stable deep blue fluorescent OLEDs.

© 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

1. Introduction

Organic blue-emitting fluorophores based on triplet–triplet annihilation (TTA) have received a considerable attention for organic light-emitting displays and solid-state lighting technologies [1–24]. Due to harvesting the triplet excitons, organic light-emitting diodes (OLEDs) that utilize TTA upconversion can achieve a maximal theoretical internal quantum efficiency (IQE) of 62.5% and hence an external quantum efficiency (EQE) of up to 12.5%.

Triplet-triplet annihilation was proposed in the early 1960s to account for the delayed fluorescence observed from the solutions of phenanthrene and anthracene [25] and in their molecular crystals and some other polycyclic aromatic hydrocarbons (PAHs) [26–28]. Consequently, it is conceivable that a large number of blue organic electroluminescent (EL) materials involving the TTA process have been built on PAHs. They have been explored as hosts or dopants of the emitting layers (EML) as well as nondoped emitters [1–24]. While nondoped blue TTA-based OLEDs have recently acquired EQEs of ca.9%–10% in the bottom-configuration with CIE y of (0.10–0.19) [13,14], the doped counterparts have provided even higher EQEs amounting to 12% with the TTA contribution, thus reaching the upper limit [12,15,19]. A donor-acceptor type dianthracenylphenylene emitter (BD3) that featured a p-methoxyphenyl moiety at the one end and p-cyanophenyl at the other hand in the simple OLEDs (ITO/TAPC/CBP/CyPyPB/LiF/Al) produced a maximal EQE of 4.2% in the neat film with CIE coordinates (0.24, 0.17) [12]. By contrast, blending BD3 in the 4,4′-bis(carbazol-9-yl)biphenyl (CBP) host afforded a remarkably increased EQE of 12% at low luminance with CIE coordinates (0.15, 0.06), which showed severe efficiency roll-off possibly due to the low dopant concentration. Nevertheless, introducing a TTA-based blue-emitting host may lead to improving both the OLED efficiency and efficiency roll-off owing to the combinational effects of efficient energy transfer, reduced concentration quenching and balanced charge injection/transport in the emitting layer [5–7,17–24]. Furthermore, highly stable OLEDs that contained the TTA-based host and conventional blue fluorescent dopant have been reported with lifetime of t_{50} exceeding hundreds of hours @ $1,000 \text{ cd m}^{-2}$ [21–24] since shortening of the exciton decay lifetime would alleviate the polaron–exciton annihilation, which represents a major degradation passway for devices harnessing triplet excitons [29–33].

It has been very demanding to develop high-performing TTA-based blue OLEDs with CIE ($y \leq 0.08$) to meet the requirements...
of the NTSC standard ($\gamma = 0.08$) and high-definition television (HDTV) ITU-R BT.709 ($\gamma = 0.06$). Moreover, a small CIE γ is beneficial to decrease the power consumption. In this context we report herein deep blue dianthracenylphenylene-based emitters DAPBN and DAPPy (Fig. 1). It has been shown that coupling the p-cyanophenyl moiety with the anthracenyl unit promotes the TTA upconversion [12–14]. Meanwhile, the 3,5-di(4-t-butylphenyl)phenyl moiety is utilized to suppress strong intramolecular interactions, tune the emission color and increase the solubility for facilitating purification [34,35]. Both emitters combine the advantages of high EQEs of 4.6% and high glass transition temperatures (T_g) of over 220 °C.

2. Experimental

2.1. Materials and instructions

All manipulations involving air-sensitive reagents were performed under an inert of dry nitrogen. 9-Bromo-10-(3,5-bis(4-t-butylphenyl)phenyl)anthracene (1) [34,35] and 4-(10-bromoanthracen-9-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3) were reported in literature. All the other starting materials were purchased commercially and used as received, unless otherwise specified.

1H NMR measurements were carried out on Bruker 400 and 500 MHz DRX spectrometers with tetramethysilane (TMS) as the internal reference. Mass spectroscopy was obtained on a Waters ACQUITY TQD liquid chromatograph-mass spectrometer using APCl ionization. Thermogravimetric analysis measurements were carried out on Netzsch TG 209 under a nitrogen flow at a heating rate of 20 °C min$^{-1}$. Differential scanning calorimetry measurements were performed on a Netzsch DSC 204 under nitrogen at a heating and cooling rate of 10 and 20 °C min$^{-1}$ respectively. UV-Vis absorption spectra were recorded on an HP 8453 UV-Vis spectrophotometer. PL spectra were recorded on an HORIBA Fluorolog-3 fluorescence spectrophotometer. PL quantum yields (PLQYs) of the nondoped films were measured utilizing an integrating sphere of Hamamatsu absolute PL quantum yield spectrometer (C9920-02G). Transient PL decay were evaluated with 340 nm LED excitation source for the nondoped film.

2.1.1. 9-(4-bromophenyl)-10-(3,5-bis(4-t-butylphenyl)phenyl)anthracene (2)

Pd(PPh3)$_4$ (120 mg, 0.10 mmol) was added quickly to a mixture of 9-bromo-10-(3,5-bis(4-t-butylphenyl)phenyl)anthracene (5 g, 8.3 mmol), 4-bromophenylboronic acid (2 g, 10 mmol) and K$_2$CO$_3$ aqueous solution (2 mol L$^{-1}$, 10 mL) in toluene (50 mL) and ethanol (6 mL) under N$_2$. The reaction was heated at 90 °C for 12 h. After being cooled to room temperature, the crude product was concentrated and distilled water was added. The residue was subjected to column chromatography over silica gel using petroleum ether/chloroform as eluent to afford a golden solid. Yield: 2.5 g (44%). 1H NMR (400 MHz, CDCl$_3$) δ 8.08–8.06 (m, 2H), 8.03–8.02 (m, 1H), 7.87–7.84 (m, 2H), 7.70–7.68 (m, 8H), 7.54–7.52 (m, 2H), 7.49 (d, $J = 8.32$ Hz, 4H), 7.35–7.30 (m, 4H), 1.43 (s, 12H), 1.37 (s, 18H). 13C NMR (126 MHz, CDCl$_3$) δ 150.73, 141.55, 139.21, 137.76, 137.71, 131.04, 130.26, 128.48, 128.74, 127.53, 126.99, 126.90, 125.66, 124.91, 122.81, 34.56, 31.34.

2.1.2. 2-(4-(10-bromoanthracen-9-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3)

Pd(PPh3)$_2$Cl$_2$ (105 mg, 0.15 mmol) was added to a mixture of compound 2 (2 g, 3 mmol), bis[pinacolato]diboron (1.2 g, 4.5 mmol) and aqueous KOC$_2$H$_3$ (900 mg, 9 mmol) in THF (50 mL) under N$_2$. The reaction was heated at 80 °C overnight. After being cooled to room temperature, the crude product was concentrated and distilled water was added. The organic layer was extracted with CH$_2$Cl$_2$, separated, dried over anhydrous MgSO$_4$, filtered and concentrated under reduced pressure. The residue was subjected to column chromatography over silica gel using petroleum ether/chloroform as eluent to afford a yellow solid. Yield: 2 g (93%). 1H NMR (400 MHz, CDCl$_3$) δ 8.08–8.06 (m, 2H), 8.03–8.02 (m, 1H), 7.87–7.84 (m, 2H), 7.70–7.68 (m, 8H), 7.54–7.52 (m, 2H), 7.49 (d, $J = 8.32$ Hz, 4H), 7.35–7.30 (m, 4H), 1.43 (s, 12H), 1.37 (s, 18H). 13C NMR (126 MHz, CDCl$_3$) δ 150.61, 142.2, 141.46, 139.86, 139.53, 137.95, 137.11, 137.06, 134.80, 130.82, 129.86, 129.71, 128.71, 127.10, 126.91, 125.83, 125.14, 125.10, 124.67, 83.95, 34.57, 31.36, 29.77.

2.1.3. 4-(10-bromoanthracen-9-yl)benzonitrile (6)

N-Bromosuccinimide (NBS) (3.5 g, 19.5 mmol) was added in three portions at 50 °C to compound 5 (3.5 g, 19.5 mmol) in CH$_2$Cl$_2$ (30 mL) in the absence of light. The completion of bromination was confirmed by TLC. The crude product was washed with ethanol to afford a golden solid. Yield: 6.3 g (90%). 1H NMR (500 MHz, CDCl$_3$) δ 8.63 (d, $J = 8.9$ Hz, 2H), 7.90–7.88 (m, 2H), 7.62–7.59 (m, 2H), 7.54–7.52 (m, 2H), 7.48 (d, $J = 8.7$ Hz, 2H), 7.42–7.39 (m, 2H), 13C NMR (126 MHz, CDCl$_3$) δ 143.71, 143.68, 135.09, 132.31, 132.06, 130.39, 130.12, 128.12, 127.12, 126.41, 126.26, 126.23, 118.74, 111.91.

2.1.4. 3-(anthracen-9-yl)pyridine (8)

Pd(PPh$_3$)$_3$ (120 mg, 0.10 mmol) was added quickly to a mixture of 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (5 g, 24 mmol), 9-bromoanthracene (7.4 g, 28.8 mmol) and K$_2$CO$_3$ aqueous solution (2 mol L$^{-1}$, 30 mL) in toluene (100 mL) and ethanol

![Fig. 1. Chemical structures of (a) DAPBN, (b) DAPPy.](image-url)
(15 mL) under N2. The reaction was heated at 90 °C for 12 h. After being cooled to room temperature, the crude product was concentrated and distilled water was added. The organic layer was separated, dried over anhydrous MgSO4, filtered and concentrated under reduced pressure. The residue was purified by column chromatography using petroleum ether/CH2Cl2 as eluent and further washed with ethanol to afford a white solid in 95% yield (3.1 g). 1H NMR (400 MHz, CDCl3) δ 8.80–8.74 (m, 1H), 7.80–7.74 (m, 1H), 7.59–7.53 (m, 3H), 7.52–7.44 (m, 2H), 7.40–7.34 (m, 2H), 1.38 (s, 18H). 13C NMR (126 MHz, CDCl3) δ 151.70, 149.16, 138.71, 134.29, 133.37, 131.31, 130.03, 129.51, 128.74, 127.31, 126.94, 126.16, 125.85, 125.46, 125.36, 125.27, 124.76, 118.92, 111.67, 34.58, 31.37. MS (APCI) m/z: [M+H+] calcd. for C65H53N, 872.9 (100%). Anal. calcd. For C67H53N: C 92.27, H 6.13, N 1.61. 1H NMR (500 MHz, CDCl3) δ 8.02–7.93 (m, 8H), 7.77–7.67 (m, 12H), 7.67 (d, J = 8.75 Hz, 2H), 7.53–7.48 (m, 8H), 7.46–7.40 (m, 4H), 1.38 (s, 18H). 13C NMR (126 MHz, CDCl3) δ 150.66, 144.56, 141.54, 139.84, 138.53, 138.05, 137.94, 137.83, 137.36, 136.78, 134.71, 132.35, 132.33, 131.52, 131.31, 130.05, 129.51, 128.74, 127.31, 126.94, 126.16, 125.85, 125.46, 125.36, 125.27, 124.76, 118.92, 111.67, 34.58, 31.37. MS (APCI) m/z: [M+H+] calcd. for C67H53N, 872.9 (100%). Anal. calcd. For C65H53N: C 92.27, H 6.13, N 1.61. Found: C 92.24, H 6.37, N 1.55.

2.1.7. 3-(10-(4-(10-(3,5-bis(4-t-butylphenyl)phenyl)anthracen-9-yl)-phenyl)anthracen-9-yl)-phenyl)anthracen-9-yl)-pyridine (DAPPy)

This compound was synthesized by a method similar to that for compound 6. The crude product was purified with column chromatography using petroleum ether/CH2Cl2 as eluent and further washed with ethanol to afford a white solid in 95% yield. 1H NMR (500 MHz, CDCl3) δ 8.06 (m, 1H), 8.02–7.93 (m, 8H), 7.77–7.67 (m, 12H), 7.61 (d, J = 8.75 Hz, 2H), 7.53–7.48 (m, 8H), 7.46–7.40 (m, 4H), 1.38 (s, 18H). 13C NMR (126 MHz, CDCl3) δ 150.66, 144.56, 141.54, 139.84, 138.53, 138.05, 137.94, 137.83, 137.36, 136.78, 134.71, 132.35, 132.33, 131.52, 131.31, 130.05, 129.51, 128.74, 127.31, 126.94, 126.16, 125.85, 125.46, 125.36, 125.27, 124.76, 118.92, 111.67, 34.58, 31.37. MS (APCI) m/z: [M+H+] calcd. for C67H53N, 872.9 (100%). Anal. calcd. For C67H53N: C 92.27, H 6.13, N 1.61. Found: C 92.24, H 6.37, N 1.55.

2.2. OLED fabrication and characterizations

DAPBN and DAPPy were evaluated as the nondoped emitters in OLEDs (ITO/HATCN(15 nm)/TAPC(60 nm)/TCTA(10 nm)/Emitter (20 nm)/TPBi(40 nm)/LiF(1 nm)/Al). The OLEDs were fabricated by evaporating each layer onto ITO substrate sequentially at pressures of ca. 4 × 10−6 Pa. Before transferring to a deposition chamber, the ITO substrates were cleaned by ultra-sonication in detergents and deionized water, dried in an oven at 120 °C for 1 h, and finally subjected to oxygen plasma treatment for 6 min. Then, the vacuum evaporation rates of organic materials were deposited at (0.1–0.15) nm s−1. Finally, a 1-nm-thick layer of LiF was deposited at 0.02 nm s−1 and the metallic cathode (Al) of 120 nm thick was deposited at a rate of 0.5–0.8 nm s−1. The effective emission area of the devices is (4 × 4) mm2. All the OLEDs were measured without encapsulation at room temperature in the ambient. The Current density–Voltage–Luminance (J-V-L) characteristics were measured with a Keithley 2400 source meter and a LS110 luminance meter. The electroluminescence (EL) spectra were collected using a spectrascan PR650 spectrophotometer. The EQEs were calculated from the Luminance-Current density characteristics and EL spectra with the hypothesis of Lambertian distribution. The transient EL decay was tested by an Agilent 8114A pulse generator to generate rectangular pulse voltages.

3. Results and discussion

3.1. Synthesis

The synthesis of compounds DAPBN and DAPPy is straightforward and outlined in Fig. 2, involving the Suzuki coupling of 4-(10-bromoanthracen-9-yl)benzonitrile (6) [12] and 3-(10-bromoanthracen-9-yl)pyridine (9) with the 3,5-bis(4-t-butylphenyl)phenyl-tethered (anthracen-9-yl)phenylboron ester 3,4,4,5-tetramethyl-1,3,2-dioxaboro lan-2-yl)pyridine (7) and subsequently selective bromination.

The identity and purity of the new emitters DAPBN and DAPPy are confirmed by 1H NMR, mass spectroscopy and elemental analysis (Figs. S1–S3 online). By introducing the 3,5-bis(4-t-butylphenyl)phenyl moiety, DAPBN and DAPPy exhibit good solubility in weakly polar organic solvents, for instance, over 20 mg mL−1 in toluene, which facilitates purification.

3.2. Photophysical properties

The absorption spectra of DAPBN and DAPPy exhibited similar absorption profiles in the range of 340–400 nm both in dilute toluene solution and as neat films (Fig. 3 and Table 1), which are attributed to the vibrational structure of the anthracene unit. Note that the major spectral shift is very small by ca. 2 nm from solution to the solid state. The optical bandgap for both compounds were estimated as 2.91 eV, based on the absorption onset of the films.

We then studied the photoluminescence (PL) of DAPBN and DAPPy in different solvents (Fig. S4 and Table S1 online). It showed that even the strongly polar solvent DMF failed to produce substantial changes on the emission spectra with respect to non-polar n-hexane, indicating that intramolecular charge transfer is not significant in particular with DAPPy. Specifically, the emission peak of DAPPy was shifted only by 6 vs. 12 nm for DAPBN when replacing n-hexane by DMF, presumably due to the robust electron-withdrawing ability of the cyano moiety. In addition, films of DAPBN and DAPPy exhibited bright deep blue fluorescence respectively at 447 and 440 nm with a narrow full width at half
maxima (FWHM) of 50–60 nm, yielding a redshift of 22 and 17 nm from toluene solution (Fig. 3 and Table 1).

The absolute solid photoluminescence quantum yields (PLQYs) were measured in an integrating sphere as 35.2% for DAPBN and 16.0% for DAPPy. Therefore, the PLQY of DAPBN appeared comparable to that of the donor-acceptor dianthracenylphenylene compound BD3 and nevertheless greatly improved relative to 1,4-bis(10-phenylanthracene-9-yl)benzene and 1-(10-phenylanthracen-9-yl)-4-(10-(4-cyanophenyl)anthracen-9-yl)benzene, revealing that the 3,5-di(4-t-butylyphenyl)phenyl endgroup could effectively reduce the concentration quenching [12].

3.3. Thermal properties

Thermal gravimetric analysis (TGA) showed that DAPBN and DAPPy began to decompose at ca. 437 and 451 °C with an initial...
weight loss of about 1% (Fig. S5 online), respectively. Differential scanning calorimetry (DSC) measurements revealed high glass transition temperatures (T_g) of 234°C for DAPBN and 227°C for DAPPy (Fig. 4). DAPBN melted at 349°C in the first heating. However, no melting was observed by introducing the 3-pyridyl moiety instead even heated up to 450°C.

3.4. Electrochemical properties

The electrochemical properties of the new compounds are characterized by cyclic voltammetry performed in CH$_2$Cl$_2$ in the presence of n-Bu$_4$NPF$_6$ (0.1 mol L$^{-1}$) as supporting electrolyte. DAPBN and DAPPy displayed a quasi-reversible oxidation with the onset at 1.07 and 1.08 V vs. Ag/AgCl, respectively (Fig. S6 online). Based on the electrochemical data, the HOMO levels were estimated as -5.53 eV for DAPBN and -5.54 eV for DAPPy with reference to the energy level of ferrocene. Therefore, the LUMO levels for the two compounds were similar as -2.62 and -2.63 eV, roughly derived from the corresponding HOMO level and absorption onset of their thin films.

3.5. Carrier transport properties

In order to understand the charge transport properties of the new emitters, the electron-only devices (EOD) (ITO/LiF(1 nm)/TPBi(10 nm)/Emitter(100 nm)/TPBi(10 nm)/LiF(1 nm)/Al) and hole-only devices (HOD) (ITO/HATCN(5 nm)/TAPC(10 nm)/Emitter(100 nm)/TAPC(10 nm)/HATCN(5 nm)/Al) devices were fabricated (Fig. 5). TPBi = 1,3,5-tris(N-phenyl-benzimidazolyl)benzene, HATCN = dipyrazino[2,3-f:2,3'-h]quinoxaline-2,3,6,7,10,11-hexa-carbonitrile and TAPC = 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane.

The Current density-Voltage (J-V) characteristics of the single-carrier devices plotted in a logarithm scale ($\ln(J/E^2)$ vs. $E^{1/2}$) exhibited a space-charge-limited current (SCLC) behavior at ca. $(2–5) \times 10^{-5}$ V cm$^{-1}$ and can be described by the equation of SCLC with field-dependent mobility (Fig. S7 and Table S2 online) [36].

After fitting the $\ln(J/E^2)$–$E^{1/2}$ curves, DAPPy appeared to exhibit a higher hole mobility with $(8 \times 10^{-2}–5.3 \times 10^{-3})$ cm2 V$^{-1}$ s$^{-1}$ at...
$E = (2–5) \times 10^5 \text{ V cm}^{-1} \text{ vs. } (3.1 \times 10^{-9}–1.4 \times 10^{-8}) \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ for DAPBN. However, DAPBN showed orders of magnitude higher electron mobility of $(3.6 \times 10^{-6}–2.3 \times 10^{-5}) \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ at $E = (2–5) \times 10^5 \text{ V cm}^{-1}$ vs. $(1.8 \times 10^{-9}–2.6 \times 10^{-8}) \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ for DAPPy.

3.6. Electroluminescent properties

DAPBN and DAPPy were first characterized as the nondoped emitters in OLEDs (ITO/HATCN (15 nm)/TAPC (60 nm)/TCTA (10 nm)/Emitter (20 nm)/TPBi (40 nm)/LiF (1 nm)/Al). TCTA = 4,4′,4′′-tris(N-carbazolyl)triphenylamine. All the layers excluding ITO were deposited by thermal sublimation. The chemical structures as well as the HOMO/LUMO levels of organic materials involved in the devices are shown in Fig. S8 (online).

Both the nondoped OLEDs exhibited deep blue EL emission with CIE coordinates of (0.15, 0.08) and (0.15, 0.07), respectively (Fig. 6 and Table 2). The EL spectra peaking at ~450 nm closely resembled the corresponding PL emission in the solid films, indicating that the exciton recombination was confined in the emitting layer and that no exciplex emission occurred with the adjacent charge-transport materials. Moreover, the deep blue OLEDs possessed remarkable color stability with practically no variation of the EL spectra over a wide range of driving voltages (Fig. S9 online).

It is interesting to note that initially DAPBN and DAPPy based OLEDs showed an enhanced current efficiency (CE) with increasing the luminance, since more triplet excitons would be fused into singlets through TTA upconversion with increasing the current density. As a result, the devices achieved a maximal CE of 4.46 cd A^{-1} @ ca. 1,298 cd m^{-2} (corresponding to 5.97% EQE) and 3.11 cd A^{-1} @ ca. 813 cd m^{-2} (4.61% EQE), respectively (Figs. 6a, b and S10 online). With respect to DAPPy, the DAPBN OLED displayed a very small efficiency roll-off. Even at a luminance of ca. 4,300 cd m^{-2}, CE remained as high as 4.0 cd A^{-1} (5.35% EQE), which could be attributed to its higher PLQY and electron mobility and further harnessing triplet excitons through triplet-triplet annihilation discussed below.

It is well-known that anthracene-based luminophores are prone to undergo triplet-triplet annihilation upconversion [1–4,20,25–28,37]. The nonlinear Luminance–Current density characteristics of the nondoped deep blue OLEDs at low current density (Fig. S11 online) supported that TTA participated in the fluorescence processes of the new compounds DAPBN and DAPPy [20,38].

Further we measured the transient EL decay of both OLEDs at different driving voltages (Figs. 7 and S12 online). A delayed EL component in the time range of microseconds was evidenced after the prompt decay, which was nevertheless absent in the transient

Fig. 6. (Color online) The EL characteristics of the deep blue nondoped OLEDs (ITO/HATCN/TAPC/TCTA/DAPBN or DAPPy)/TPBi/LiF/Al. (a) Current density-Voltage-Luminance (J-V-L), (b) Current efficiency-Luminance (CE-L), (c) EQE-Luminance (EQE-L) and (d) EL spectra.
PL performed in the ambient at room temperature (Fig. S13 online). Note that DAPBN and DAPPy showed the lifetime of the excited state with ca. 1.29 and 1.22 ns in the nondoped solid films, respectively. Increasing the voltage led to decreasing the delayed component due to the enhanced polaron-triplet exciton annihilation, which seemed more severe in the DAPPy OLED.

The logarithm of the transient EL intensity vs. time at an applied voltage of 7 V was fitted to probe the delayed component characteristics (Fig. S12 online). In both cases, the decay followed slope of ca. −1 in the initial time region and subsequently slope of ca. −2, as observed in conjugated polymers MEH-PPV and polyfluorene [39,40] and small-molecule NPB:TPBi exciplex [41] and anthracene-based emitters [13,14]. The presence of the decay at slope of ca. −2 certainly originated from TTA [39,41] while the counterpart at slope of ca. −1 was attributed to the effect of the dispersive migration of the triplet population [40].

4. Conclusions

We have reported soluble efficient deep blue dianthracenylphenylene-based molecular fluorophores, which show high thermal stability and glass transition temperatures of over 220°C. The initial characterization of the new emitters in the nondoped OLEDs yielded high EQEs of 4.6%−5.9% with CIE y (y ≤ 0.08), closely matching the NTSC standard. Replacing the 3-pyridyl endgroup with 4-cyanophenyl increases the PLQY and electron mobility, hence leading to improving the EQE with very small efficiency roll-off. The analysis of the transient EL decay of the nondoped deep blue OLEDs as well as the Luminance–Current density characteristics supports that triplet-triplet annihilation upconversion contributes to the fluorescent processes. The new emitters reported here shall deserve further efforts to afford stable deep blue OLEDs. Work along the line is in progress in our laboratory and will be reported in due course.

Conflict of interest

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported by the National Key R&D Program of China (2016YFB0400701), NSFC-Guangdong Joint Program (U1801258 and U1301243), Department of Science and Technology of Guangdong Province (2017A050503002) and Foundation of Guangzhou Science and Technology Project (20150410012). XHZ greatly acknowledges the support of Dongguan Major Special Project (2017215117010).

Author contributions

LP, MW, LYW and XFW contributed to the synthesis and characterization. DGM and JWY contributed to device fabrication and characterization. LP and XHZ wrote the manuscript. XHZ, DGM and YC initiated the project. XHZ conceived the idea and organized the manuscript. All the authors including XLH contributed to discussion.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.scib.2019.04.029.

References

Ling Peng is a Ph.D. student at the State Key Laboratory of Luminescent Materials and Devices, South China University of Technology (SCUT) under the guidance of Prof. Xu-Hui Zhu. Her work focuses on the design and synthesis of molecular blue emitters for organic light-emitting diodes.

Dongme Ma received his Ph.D. degree from Electrical Engineering Department of Jilin University in 1995. Then he worked successively as a visiting professor in Universidade Federal do Paraná, Brazil, and a research fellow at Durham University and St. Andrews University, UK. He joined Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, as a professor in 2001, and moved to South China University of Technology (SCUT) in 2016. His research interests are organic optoelectronic devices and physics, including OLEDs, OPDs and optoelectronic processes in organic semiconductors.

Xu-Hui Zhu received his Ph.D. degree at the State Key Laboratory of Coordination Chemistry, Nanjing University in 2000. Then he worked successively as a visiting professor at Martin-Luther-Universität Halle-Wittenberg, Université d'Angers and Fudan University, and joined SCUT in 2004. His research interests include design and synthesis of organic π-electron systems with tailored properties for optoelectronics.