
Lion pride optimizer: An optimization algorithm inspired by lion pride behavior

Bo WANG, XiaoPing JIN and Bo CHENG

Citation: SCIENCE CHINA Information Sciences 55, 2369 (2012); doi: 10.1007/s11432-012-4548-0

View online: http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

View Table of Contents: http://engine.scichina.com/publisher/scp/journal/SCIS/55/10

Published by the Science China Press

Articles you may be interested in

LionRank: lion algorithm-based metasearch engines for re-ranking of webpages
SCIENCE CHINA Information Sciences 61, 122102 (2018);

Cryptanalysis of full PRIDE block cipher
SCIENCE CHINA Information Sciences 60, 052108 (2017);

Autonomous reconfigurable hybrid tail-sitter UAV U-Lion
SCIENCE CHINA Information Sciences 60, 033201 (2017);

A pigeon-inspired optimization algorithm for many-objective optimization problems
SCIENCE CHINA Information Sciences 62, 070212 (2019);

Multiobjective optimization using an immunodominance and clonal selection inspired algorithm
Science in China Series F-Information Sciences 51, 1064 (2008);

http://engine.scichina.com/publisher/scp/journal/SCIS
http://engine.scichina.com/search/search?fullnameFilter=Bo%20WANG
http://engine.scichina.com/search/search?fullnameFilter=XiaoPing%20JIN
http://engine.scichina.com/search/search?fullnameFilter=Bo%20CHENG
http://engine.scichina.com/publisher/scp/journal/SCIS
http://engine.scichina.com/doi/10.1007/s11432-012-4548-0
http://engine.scichina.com/publisher/scp/journal/SCIS/55/10
http://engine.scichina.com/publisher/scp
http://engine.scichina.com/doi/10.1007/s11432-017-9343-5
http://engine.scichina.com/doi/10.1007/s11432-015-5487-3
http://engine.scichina.com/doi/10.1007/s11432-016-9002-x
http://engine.scichina.com/doi/10.1007/s11432-018-9729-5
http://engine.scichina.com/doi/10.1007/s11432-008-0040-2

. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

October 2012 Vol. 55 No. 10: 2369–2389

doi: 10.1007/s11432-012-4548-0

c© Science China Press and Springer-Verlag Berlin Heidelberg 2012 info.scichina.com www.springerlink.com

Lion pride optimizer: An optimization algorithm
inspired by lion pride behavior

WANG Bo, JIN XiaoPing & CHENG Bo∗

State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China

Received April 6, 2011; accepted June 24, 2011; published online March 12, 2012

Abstract In this paper, we report a novel optimization algorithm, lion pride optimizer (LPO), which is

inspired by lion pride behavior. The framework is mainly based on lion prides’ evolution process and group

living theory. In a lion pride, brutal competition of individuals happens among male lions both within and

among prides; on the other hand, each member plays an important role in the persistence of a lion pride.

Based on this framework, concepts from lion prides behavior, e.g., the strongest males occupy nearly all mating

resources, and if a new cohort of males is able to take over a pride, they will seek to kill young cubs sired by

their predecessors, are employed metaphorically to design optimum searching strategies for solving continuous

optimization problems. From the studies of the algorithm property, it is found that the LPO algorithm is not

sensitive to most parameters, which shows the robustness of the algorithm and the parameters are not problem-

dependent. Central tendency of the algorithm is not found. It is found that the pride update strategy and

brutal competition of individuals are two main factors that contribute to the performance of LPO. According

to the test results on 23 famous benchmark functions, the LPO algorithm has better performance than the

other seven state-of-the-art algorithms on both unimodal and multimodal benchmark functions; in the test of

high-dimensional multimodal problems, LPO outperforms the other five algorithms on all benchmark functions.

Keywords animal behavior, evolutionary algorithm, lion pride, optimization, swarm intelligence

Citation Wang B, Jin X P, Cheng B. Lion pride optimizer: An optimization algorithm inspired by lion pride

behavior. Sci China Inf Sci, 2012, 55: 2369–2389, doi: 10.1007/s11432-012-4548-0

1 Introduction

Research on social insect behavior has provided computer scientists with powerful methods for design-

ing distributed control and optimization algorithms. These techniques are being applied successfully to a

variety of scientific and engineering problems [1]. Among them, the most successful are evolutionary algo-

rithms (EAs) which draw inspiration from evolution by natural selection [2]. Currently, there are several

different types of EAs which include genetic algorithms (GAs), genetic programming (GP), evolutionary

programming (EP), and evolutionary strategies (ES) [3].

Genetic algorithm (GA) is a famous stochastic optimization algorithm pioneered by Holland [4]. It

mimics the evolutionary process of a population of individuals over time. The hallmark of GA is the

provision of a population (multiple parallel search capability), selection (survival of the fittest), crossover

(sexual reproduction), and mutation (random incremental changes) [5]. Evolutionary strategies (ES) and

∗Corresponding author (email: chengbo@tsinghua.edu.cn)

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

2370 Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10

evolutionary programming (EP) are closely related to GA, and the schools of GA, ES, and EP are best

viewed as different dialects of the same fundamental evolutionary algorithm (EA) [6].

However, the capability of traditional EP, ES, and GA is limited. Fast evolutionary programming

(FEP) and fast evolutionary strategies (FES) were proposed to enhance the convergence rates [2,7],

and many improvements were conducted to enhance the performance of GA [5]. For example, many

authors advocated that an adaptive mutation schedule would enhance GA performance significantly [8].

It was confirmed by numerous empirical studies that duplicate removal can enhance the performance of

GA significantly [9–11]. From another point of view, premature convergence is commonly thought of

as an undesirable phenomenon to cause poor performance of GA [5]. Numerous operators that modify

the selection, crossover or mutation to diversify the population have been proposed. Two well-known

examples are fitness sharing [12] and island model [13]. Another solution that adaptively mutates and

never revisits was proposed in [5]. On the other hand, differential evolution (DE), a special case of GAs,

has been proposed and was proved that it could solve a broad range of optimization problems [14,15].

In recent years, evolutionary computational methods, which belong to the swarm intelligence (SI) cate-

gory, have proven to be promising tools to solve many engineering and financial problems. They have been

found to be powerful methods in domains where analytic solutions have not proven effective. Currently,

the most famous SI algorithms are ant colony optimization (ACO) and particle swarm optimizer (PSO),

ACO was developed based on the behavior of real ant colonies, in particular by their foraging behavior

[1], and it employs artificial ants that cooperate to find good solutions for discrete optimization problems.

ACO was mainly applied to vehicle routing, scheduling, timetabling, traveling salesman problem, routing

in packet-switched networks, and data mining [16]. PSO gleaned ideas from the social behavior of bird

flocks and fish schools [17]. PSO was employed to solve many problems, such as nonlinear optimization

problem and min-max optimization. For more information of recent development of PSO, readers are

directed to a comprehensive survey of PSO in [18].

The two SI algorithms mentioned above were inspired by some aspects of animal behavior [2]. Ac-

tually, there were many algorithms belonging to the category of the so-called animal behavior-inspired

algorithms. Area-restricted searching behavior, on which predators initially search for prey at a chosen

pace and directions, has inspired synthetic predator search (SPS) algorithm for solving combinatorial

optimization problems [19]. Society and civilization algorithm, inspired from the intra and intersociety

interactions within a formal society and the civilization model (e.g., human and social insect societies),

was designed to solve single objective constrained optimization problems [20]. Predator-prey model from

animal behavior has been used to approximate the shape of the Pareto-optimal set of multi-objective

optimization problems [21].

Recently, the behavior of bacteria inspired two kinds of algorithms. One is bacterial foraging opti-

mization (BFO) designed from the natural foraging strategy of bacteria [22], and has been applied to

real-world problems such as optimal controller design, harmonic estimation, transmission loss reduction,

active power filter synthesis, and learning of artificial neural networks. The performances of BFO on

unimodal functions and multimodal functions with a few local minima were examined in [23]. The other

one is bacteria chemotaxis optimization (BCO), which is based on a bacteria chemotaxis model. How-

ever, BCO performs similarly to standard evolution strategies and worse than evolution strategies with

enhanced convergence properties [24]. Thus the potential of bacteria-inspired algorithms remains to be

exploited.

A recently published paper reported a novel optimization, group search optimizer (GSO), which was

inspired by animal behavior, especially animal searching behavior. The framework is mainly based on

the producer-scrounger model, which assumes that group members search either for “finding” (producer)

or for “joining” (scrounger) opportunities. The performance of GSO proved that it outperformed several

state-of-the-art algorithms [2].

In this paper, inspired by animal behavior, especially lion prides behavior, we propose a novel opti-

mization algorithm, called lion pride optimizer (LPO), primarily for continuous optimization problems.

African lions live in social groups called prides and exhibit group territorial behavior [25]. In a pride,

male lions are usually transient members of prides; they are replaced by new males who become resident

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10 2371

for 2–4 years before being replaced by yet another coalition [26]. Both sexes are polygamous and breed

throughout the year, but females are usually restricted to the one or two adult males of the pride. Sexual

maturity male cubs are expelled from the pride and become nomads until they are old enough to try

to take over another pride. Many adult males remain nomads for life, mating opportunities for nomad

males are rare, and competition between male lions to defend a pride’s territory and mate with the pride

females is fierce. Cooperating partnerships of 2–4 males are more successful at maintaining tenure with

a pride than individuals [27]. If a new cohort of males is able to take over a pride, they will seek to

kill young cubs sired by their predecessors. Thus, the members of a pride, especially male lions, are not

steady. Frequent male takeovers may be an explanation of why the male lion can be very strong and

become “king of beasts”.

It is thought that Darwin’s natural selection theory indicates the inner rule of biology evolution.

Survival of the fittest (SF) is the main idea [4]. For a lion pride, only the few strongest male lions can

remain in the pride. Thus, SF model is adopted in the LPO algorithm. In the SF model, three main

evolution strategies are developed according to the lion pride behavior: 1) Two best members occupy all

the mating resources of the pride; 2) the best member of the new offspring is trained to be stronger; 3)

evolution stagnation leads to the takeover by new individuals, and long evolution stagnation leads to a

mutation to the best member.

Optimization, which is a process of seeking optima in a search space, is analogous to the evolution

process (the best member represents the optima obtained) of animals in nature. The LPO proposed in

this paper is a population-based optimization algorithm that employs SF model as the framework. In the

framework, behaviors and strategies of lion prides are employed to design the special evolution strategies.

One-dimension search is adopted in the training and mutation to enhance the constringency speed, and

a new crossover strategy is adopted to avoid premature convergence.

To evaluate the performance of the LPO algorithm comprehensively, a precise and long-term study on

a set of 23 benchmark functions is presented in this paper. For the comparison of algorithms’ capability,

the results of newly published GSO, GA, PSO [2], EP [7], ES [28], and their improved algorithms FEP

[7], FES [28] are employed. The 23 benchmark functions are adopted (or partly adopted) to evaluate

EAs by many researches [2,5,7,23,28,29]. However, their dimensions are small (up to 30) compared with

real-world optimization problems which usually involve hundreds or even thousands of variables [2]. In

order to further investigate whether LPO is able to solve large-scale optimization problems well, we

tested LPO algorithm on six multimodal benchmark functions (e.g., f8–f13 studied in this paper) in

300 dimensions.

This paper is organized as follows. In the rest parts, we will introduce LPO and its implementa-

tion details in Section 2. The experimental results of the proposed LPO and the comparison with

other algorithms are presented in Section 3. The algorithm property is studied in Section 4. As a new

population-based swarm intelligence and evolution algorithm, LPO does share some characteristics with

other swarm intelligence algorithms and evolution algorithms, such as PSO, GSO, ACO and GAs. Thus

the discussion of the differences and similarities between LPO and GSO, ACO, PSO, GAs are presented

in Section 5. The conclusions are obtained in Section 6.

2 Lion pride optimizer

2.1 Basic property

LPO is also a population-based optimization algorithm. A group of lions live together, and the members

compete with each other for the king position. The kings mate with nearly all female lions in the group;

they reproduce offspring and defend their territory against the invading of other groups; the offspring

will grow up and become strong enough to take over the king position or be driven out from the group

if they are not strong enough. The kings of the group need to become stronger to defend the menace

both within and without the group; otherwise, the kings may be replaced by other male lions within or

without the group. If a new cohort of males is able to take over a pride, they will seek to kill young cubs

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

2372 Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10

sired by their predecessors.

The population of a lion pride is set to 50, which is larger than the average group size of real lion pride.

The population (population size: M) of the LPO algorithm is called pride and each individual is called

member. For an n-dimensional optimization problem, the ith member in the kth generation of the pride

is represented by an n-dimensional vector Xk
i ∈ Rn, i = 1, 2, . . . ,M , which represents or equals the real

independent variable.

For minimum problems, the fitness function f(x) can be set to be the real minimum function, while for

maximum problems, f(x) can be set to be the negative real minimum function. The optimization process

is along with the generation change; therefore, the generation number of the LPO is a main factor that

can control the optimization process.

2.2 Surviving of two best members

In LPO, members of a pride can be considered as either male or female if it is needed to enhance the

evolution efficiency. As mentioned before, cooperating partnerships of 2–4 males are more successful at

maintaining tenure with a pride than individuals [27], and the male lions, which were evicted from a

pride when they become adult, may form a coalition with other males [30], and as the randomicity of

the evolution process, it is also possible that the best members reproduce worse offspring in the next

generation. Therefore, in the SF model, the two best members of each pride are assumed to be males

that occupy all the mating resources of the pride. Then

Xk
b1 ∈ {Xk

i , i = 1, 2, . . . ,M}, s.t. f(Xk
b1) = max {f(Xk

i), i = 1, 2, . . . ,M} (1)

is the best member in the k generation. Similarly, Xk
b2 is the second best member.

The surviving of two best members is somewhat similar to the niche method. However, the only

sameness with niche method is that two best members are saved. Any strategy in the niche method

is not used in LPO. As the competition among different members is cruel and the pride is updated

frequently, the surviving of just one best member is apt to lead to premature convergence; therefore, two

best members are saved in LPO.

2.3 Novel crossover strategy

As mentioned before, two best members of a pride will be saved in the optimization process. If traditional

crossover strategy [4] is adopted in our algorithm, it is similar to the situation that the two members are

copied for many times. However, it is confirmed by numerous empirical studies that duplicate removal

can enhance the performance of EAs significantly [9–11]. Thus a new mating strategy that can avoid

duplication is sought and adopted in LPO.

In a pride, members are very likely to be around with the two best members. Hence, the direction

that connects one member and one best member is very likely to be particular, and all these directions

are likely to cover all optimization directions. As there are two best members and two directions that

connect two members (e.g., for member A and member B, one direction is from A to B, and the other

direction is from B to A). Hence, each female can reproduce four children with the two best members but

just one in four of them can survive at last. The detailed strategy is described in the following formula,

and the convergence process of LPO is sketched in Figure 1.

xk+1
4i−3 = Xk

b1 +mcki (X
k
b1 −Xk

i), i = 1, 2, . . . ,M,

xk+1
4i−2 = Xk

b1 −mcki (X
k
b1 −Xk

i), i = 1, 2, . . . ,M,

xk+1
4i−1 = Xk

b2 +mcki (X
k
b2 −Xk

i), i = 1, 2, . . . ,M,

xk+1
4i = Xk

b2 −mcki (X
k
b2 −Xk

i), i = 1, 2, . . . ,M,

(2)

where xk+1
4i and xk+1

4i−1 are the children of Xk
b2 and Xk

i , xk+1
4i−2 and xk+1

4i−3 are the children of Xk
b1 and

Xk
i , mcki is the mating coefficient for Xk

i . If the mating coefficient is a constant, the offspring will be

reproduced in a fixed step, the randomicity of the algorithm is reduced and the algorithm capability may

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10 2373

100

100

50

50

0

0

−50

−50
−100

−100

Figure 1 Sketch map of six members’ convergence (minimum in [0,0]) of LPO in five iteration. Each shape is a member.

be unstable. Thus, in LPO, for a pride, there is a basic mating coefficient mc0, and mating coefficient is

calculated as follows:

mcki = mc0(rand(1, 1)− 0.5), i = 1, 2, . . . ,M, (3)

where rand(1,1) is a random number in (0,1). Then there is a different mcki for Xk
i . Among the four

children, just one in four of them can survive at last,

Xk+1
1 = xk+1

α , α ∈ {1, 2, . . . , 4M}, s.t. f(xk+1
α) = max {f(xk+1

i), i = 1, 2, . . . , 4M}, (4)

where Xk+1
1 is the first member in k + 1 generation. Similarly, Xk+1

j is jth member (j = 2, 3, . . . ,M).

2.4 Scaling of searching space

Although the pride is a stable social unit, it is a fission-fusion social group, in which individuals are

typically found in a range of subgroup sizes and compositions [31]. Male coalitions challenge one another

for pride residency [26], and it was indicated that male lions may use lethal aggression to tip the balance

of power in favor of their prides. Numerical advantage in territorial competition is a primary benefit of

group living in lions and may have been important in the evolution of lion sociality [31]. The incoming

males kill or evict dependent offspring sired by the previous coalition, so as to accelerate the mothers’

return to sexual receptivity [26]. Thus in LPO, if the evolution of a pride stops (called stagnation) for

a certain period (bigger than a threshold ths), all members of the pride will be replaced by a new set

of members. In order to keep the convergence speed, the two best members of the original pride will be

saved and the new members will be created in a smaller space around the best members.

However, premature convergence is an undesirable phenomenon often reported in the literature that

causes poor performance of EAs. Therefore, in order to avoid premature convergence, another strategy

is imported, and then the search space will not decrease at all times and will return to the original search

space after a long period. Then

Lk =

⎧
⎨

⎩

L0, mod(ts, k2) = 0,

L0

k1 ln (ts+ 2)− k1 + 1
, mod(ts, k2) �= 0,

(5)

where Lk ∈ R
n is the length of searching space in n dimension space, L0 is the original length, ts

is the stagnation times, k1, k2 are constants, mod(ts, k2) is the arithmetical compliment of ts/k2. If

mod(ts, k2) = 0, the center of searching space is original one. If mod (ts, k2) �= 0, the center is Xk
b1.

By formula (4), a new generation is created. For a lion pride, just the two best members of each

pride are assumed to be the males that occupy all the mating resources of the pride. Thus, the two

best members must be strong enough to resist the challenge from other males for pride residency. Hence

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

2374 Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10

in LPO, the two potentially best members are further optimized by searching in the potentially best

evolution direction. The selection of potentially best evolution directions is as follows:

Dk+1
b1 =

xk+1
α −Xk

b1

‖xk+1
α −Xk

b1‖2
, s.t.,

f(xk+1
α)− f(Xk

b1)

‖xk
α −Xk

b1‖2
= max

{
f(xk+1

i)− f(Xk
b1)

‖xk+1
i −Xk

b1‖2
, i = 1, 2, . . . , 2M

}

,

Dk+1
b2 =

xk+1
β −Xk

b2

‖xk+1
β −Xk

b2‖2
, s.t.,

f(xk+1
β)− f(Xk

b2)

‖xk
β −Xk

b2‖2
= max

{
f(xk+1

j)− f(Xk
b2)

‖xk+1
j −Xk

b2‖2
, j = 1, 2, . . . , 2M

}

,

(6)

where xk+1
i and xk+1

j is the children of Xk
b1 and Xk

b2 respectively, Dk+1
b1 is the best evolution direction

of the best member in the k + 1 generation, and Dk+1
b2 is the best evolution direction of the second best

member in the k+1 generation. Then, according to the best evolution directions, the two best members

are further optimized as follows:

Xk+1
b1 ∈ {Xk+1

b1 + εDk+1
b1 }, s.t. f(Xk+1

b1) = max {f(Xk+1
b1 + εDk+1

b1)},
Xk+1

b2 ∈ {Xk+1
b2 + εDk+1

b2 }, s.t. f(Xk+1
b2) = max {f(Xk+1

b2 + εDk+1
b2)},

ε =
(1001− j)||L0||2
2000 ln(k + 2)

,

(7)

where ε is a set of search steps (a group of values, the form adopted in this paper is listed above),

j = 1, 2, . . . , 2000, and ||x||2 is the Euclidean distance of x.

2.5 Creating of better member

The optimization strategy above is mainly designed according to the behavior of male lions in the pride.

This analysis suggested that female density, cub productivity, adult female mortality, and the average

age of adult females determine the long-term persistence of a lion pride [32]. Thus, if a lion pride has

not evolved for a long period, it may disappear and all territory and resources will be occupied by other

stronger prides. Hence in LPO, if the evolution of a pride stops for a period (bigger than a threshold

thls, called long stagnation, and thls is bigger than ths), a stronger best member is created to represent

the stronger pride, and the stronger best member is created by one-dimension search in each dimension

(see formula (8)).

Xk+1
b1 ∈ {Xk+1

b1 + εe(n, i)}, s.t., f(Xk+1
b1) = max {f(Xk+1

b1 + εe(n, i)), i = 1, 2, . . . , n},

ε =
L0(1)(201− j)

200× 102tls−1
, j = 1, 2, . . . , 400,

(8)

where ε is a set of search steps (a group of value, the form adopted in this paper is listed above), tls is

the long stagnation times, and e(n, i) is a n-dimension unit vector with just one nonzero element in ith

position.

The flowchart of the LPO algorithm is presented in Figure 2. The pseudocode for the LPO algorithm

is listed in Table 1.

3 Simulation results

3.1 Test functions

It is thought that no algorithm can have elevated performance on all problems [33]; thus to have an

all-sided understanding of the capability of our proposed LPO, we adopted a large set of benchmark

functions as listed in Table 2 [2,7]. The 23 benchmark functions can be grouped into unimodal functions

(f1–f7), many local minima multimodal functions (f8–f13), and few local minima multimodal functions

(f14–f23). Though they were adopted (or partly adopted) by many other researches [2,5,7,23,28,29], their

dimensions are small (up to 30) compared with real-world optimization problems [2]. Many local minima

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10 2375

Begin

Generate and evaluate
the initial members

Select the best two
members using (1)

Evolution stagnation?

No

No

No

No

Yes

Yes

Yes

Yes

Change search
space using (5)

For a certain time?

Optimize the best
member using (8)

Long evolution
stagnation?

Reproduce and select the
next generation

Further optimize two
potential best members

using (6) and (7)

Select the next
generation using (4)

Maximum
evolution time meet?

End

Figure 2 Flowchart of the LPO algorithm.

multimodal functions (f8–f13) are regarded as the most difficult functions to optimize, since the number

of local minima increases exponentially as the function dimension increases [34]. Thus, to evaluate

the performance of LPO on solving large-scale optimization problems, multimodal functions f8–f13 are

selected and extended to 300 dimensions as listed in Table 3. For detailed information, please shift to [7].

3.2 Experimental settings

The parameters of LPO are set as follows: The initial population of LPO is generated uniformly at

random in the search space, and the population is set to 50. The basic mating coefficient mc0 is 2.

The constants k1, k2 used in changing search space are set to 1000 and 5, respectively. Stagnation

threshold ths and long stagnation threshold thls are set to 10 and 100 for complicated problems (function

evolutions>100000), 5 and 20 for general problems (10000�function evolutions�100000), and 2 and 4

for simple problems (function evolutions<10000) respectively. If long stagnation happens more than 4

times (named tolerance of long stagnation times), the optimization will terminate. In the comparison of

best members in the current generation and the last generation, just when f(Xb1)
k+1 > f(Xk

b1)+ 0.0001,

the stagnation times ts will be set to 0. The settings of these parameters are used throughout all of our

experiments.

We compared the performance of LPO with that of five different EAs:

• genetic algorithm (GA)[4];

• evolutionary programming (EP) [35,36];

• evolution strategies (ES) [37];

• particle swarm optimization (PSO) [38];

• group search optimizer (GSO) [2].

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

2376 Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10

Table 1 Pseudocode for the LPO algorithm

Set the generation k = 1;

Generate the initial members randomly in the search space and calculate the fitness of each member f(Xk
i);

WHILE (the termination conditions are not met);

Surviving of two best members Select the best two members of current generation using formula (1);

Replace worst member of this generation with the saved best member;

If the best member is better than that in k − 1 generation, update the

saved two best members;

Else replace the saved second best member with the best member in

this generation;

Scaling of searching space If stagnation times are over the threshold ths, change the search space

using (5);

Update the pride Generate the initial members randomly in the search space and calcu-

late the fitness of each member f(Xk
i);

Continue;

Creating of better member If stagnation times are over the bigger threshold thls, Optimize the best

member by one-dimension search in each dimension using (8);

If this case appears for several times, terminate the optimization and

exit the program;

FOR (each member in the pride);

Novel crossover strategy Randomly create and calculate mating coefficient mcki using (3);

For (each member in the pride), reproduce four children for each pair

using (2);

Select the potentially best evolution directions using (6);

Search in the potentially best evolution directions for better member

using (7);

Select the best members to the next generation using (4);

Set k = k + 1;

END FOR;

END WHILE;

Among published results on the five different EAs, we adopt the test results of f1 − f23 from [2,7,28]

for comparison. In [7,28], FEP and FES, which replace Gaussian mutations of conventional EP (CEP)

and conventional ES (CES) with Cauchy mutations, were proposed and the published results are adopted

for comparison. See [2,7,28] for the parameters of these algorithms. For the 300-dimensional cases, the

published results in [2] are adopted for comparison, and the parameters of LPO are the same as those

used in 30-dimensional problems.

To be equal to the run times adopted for the reference EAs in previous studies, one thousand inde-

pendent runs of LPO algorithm have been executed on 30-dimensional benchmark functions f1–f13, for

benchmark functions f14–f23, 50 runs have been executed. The numbers of function evaluations for the 23

benchmark functions are tabulated in Table 4. It can be seen from the table that the numbers of function

evaluations of LPO are less than or equal to other EAs. For 300-dimensional benchmark functions, five

runs were executed to obtain the average results. The maximum number of function evaluations for the

six 300-dimensional benchmark functions is set to 3750000 for LPO, which is the same as the other four

algorithms [2].

The experiments include an average test on all algorithms for each benchmark function. For 30-

dimensional benchmark functions f1–f13, which are executed for one thousand independent runs, the

standard deviation test is adopted.

The experiments were carried out on a PC with a 1.80-GHz Inter Processor and 1.0-GB RAM. All the

programs were written and executed in MATLAB 6.5. The operating system was Microsoft Windows XP.

The qualifications were the same as [2]. The parameters of MATLAB 6.5 were set to the default values

to ensure the experimental condition was worse or equal to that in [2], in order to get a comparable CPU

time.

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10 2377

Table 2 Twenty three benchmark functions. n is the dimension of the function, S is the feasible search space, fmin is the

global minimum value of the function, and Xmin is the location of global minimum value of the function. Please refer to

[7] for the values of parameters in f14–f15, f19–f23

Test function n S fmin Xmin

f1(x) =
∑n

i=1 x
2
i 30 [−100, 100]n 0 (0, . . . , 0)

f2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| 30 [−10, 10]n 0 (0, . . . , 0)

f3(x) =
∑n

i=1(
∑i

j=1 xj)2 30 [−100, 100]n 0 (0, . . . , 0)

f4(x) = maxi {|xi|, 1 � i � n} 30 [−100, 100]n 0 (0, . . . , 0)

f5(x) =
∑n−1

i=1 (100(xi+1 − x2
i)

2 + (xi − 1))2 30 [−30, 30]n 0 (1, . . . , 1)

f6(x) =
∑n

i=1(�xi + 0.5�)2 30 [−100, 100]n 0 (0, . . . , 0)

f7(x) =
∑n

i=1 ix
4
i + random[0, 1) 30 [−1.28, 1.28]n 0 (0, . . . , 0)

f8(x) =
∑n

i=1(xi sin
√|xi|)2 30 [−500, 500]n −12569.5 (420.9687, . . . , 420.9687)

f9(x) =
∑n

i=1(x
2
i − 10 cos (2πxi) + 10)2 30 [−5.12, 5.12]n 0 (0, . . . , 0)

f10(x) = −20 exp (−0.2
√

1
n

∑n
i=1 x

2
i) −

exp (1
n

∑n
i=1 cos (2πxi)) + 20 + e

30 [−32, 32]n 0 (0, . . . , 0)

f11(x) =
1

4000

∑n
i=1(xi)2 −

∏n
i=1 cos (

xi√
i
)+1 30 [−600, 600]n 0 (100, . . . , 100)

f12(x) = π
n
{10 sin2 (πy1) +

∑n−1
i=1 (yi − 1)2[1 + 10 sin2 (πyi+1)] + (yn −

1)2}+
∑n

i=1 u(xi, 10, 100, 4)

30 [−50, 50]n 0 (1, . . . , 1)

yi = 1 + (xi + 1)/4

u(xi, a, k,m) =
⎧
⎪⎨

⎪⎩

k(xi − a)m , xi > a

0 , −a � xi � a

k(−xi − a)m , xi < −a

f13(x) = 0.1{sin2 (π3xi)+
∑n−1

i=1 (xi−1)2[1+

sin2 (3πxi+1)] + (xn − 1)2[1+ sin2 (2πxn)]}+∑n
i=1 u(xi, 5, 100, 4)

30 [−50, 50]n 0 (1, . . . , 1)

f14(x) = [1
500

+
∑25

i=1
1

j+
∑2

i=1(xi−aij)
6]

−1 2 [−65.5, 65.5]n 1 (−32,−32)

f15(x) =
∑11

i=1[ai −
x1(b

2
i+bixi)

b2i+bix3+x4
]2 4 [−5, 5]n 3.08 ×

10−4
(0.1928, 0.1908, 0.1231, 0.1358)

f16(x) = 4x2
1−2.1x4

1+
1
3
x6
1+x1x2−4x2

2+4x4
2 2 [−5, 5]n −1.0316 (0.08983,−0.7126),

(−0.08983, 0.7126)

f17(x) = (x2 − 5.1
4π2 x

2
1 + 5

π
− 6)2 + 10(1 −

1
8π

) cos x1 + 10

2 [−5, 10]×
[0, 15]

0.398 (−3.142, 2.275), (3.142, 2.275),

(9.425, 2.425)

f18(x) = [1+(x1+x2+1)2(19−14x1+3x2
1−

14x2+6x1x2+3x2
2)]× [30+(2x1−3x2)2(18−

32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]

2 [−2, 2]n 3 (0,−1)

f19(x) = −∑4
i=1 ci exp[−

∑n
j=1 aij(xj − pij)

2] 3 [0, 1]n −3.86 (0.114, 0.556, 0.852)

f20(x) = −∑4
i=1 ci exp[−

∑n
j=1 aij(xj − pij)

2] 6 [0, 1]n −3.32 (0.201, 0.150, 0.477, 0.275,

0.311, 0.657)

f21(x) = −∑5
i=1[(x− ai)(x− ai)

T + ci]
−1 4 [0, 10]n −10 (4, 4, 4, 4)

f22(x) = −∑7
i=1[(x− ai)(x− ai)T + ci]−1 4 [0, 10]n −10 (4, 4, 4, 4)

f23(x) = −∑10
i=1[(x− ai)(x− ai)T + ci]−1 4 [0, 10]n −10 (4, 4, 4, 4)

Table 3 Six 300-dimensional multimodal benchmark functions

Test function n S fmin Xmin

f8(x)300 300 [−500, 500]n −125694.7 (420.9687, . . . , 420.9687)

f9(x)300 300 [−5.12, 5.12]n 0 (0, . . . , 0)

f10(x)300 300 [−32, 32]n 0 (0, . . . , 0)

f11(x)300 300 [−600, 600]n 0 (100, . . . , 100)

f12(x)300 300 [−50, 50]n 0 (0, . . . , 0)

f13(x)300 300 [−50, 50]n 0 (0, . . . , 0)

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

2378 Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10

Table 4 Maximal number of function evolutions for function f1–f23

LPO GSO/GA/PSO CEP/FEP/CES/FES LPO GSO/GA/PSO CEP/FEP/CES/FES

f1 150000 150000 150000 f13 150000 150000 150000

f2 150000 150000 200000 f14 1000 7500 10000

f3 150000 250000 500000 f15 250000 250000 400000

f4 100000 150000 500000 f16 750 1250 10000

f5 100000 150000 2000000 f17 1250 5000 10000

f6 150000 150000 150000 f18 5000 10000 10000

f7 150000 150000 300000 f19 750 4000 10000

f8 150000 150000 900000 f20 2500 7500 20000

f9 250000 250000 500000 f21 7500 10000 10000

f10 150000 150000 150000 f22 7500 10000 10000

f11 150000 150000 200000 f23 7500 10000 10000

f12 150000 150000 150000

Table 5 Comparison of LPO with GSO, GA, and PSO on benchmark function f1–f7. All results were averaged over 1000

runs

Algorithms LPO GSO PSO GA

f1 Mean (Rank) 2.5007×10−12 (2) 1.9481×10−8 (3) 3.6927×10−37 (1) 3.1711 (4)

Std. (CPU) 4.0345×10−13 (11.9) 1.1629×10−8 (27.6) 2.4598×10−36 (36.3) 1.6621 (12.5)

f2 Mean (Rank) 7.5182×10−7 (2) 3.7039×10−5 (3) 2.9168×10−24 (1) 0.5711 (4)

Std. (CPU) 7.9940×10−8 (15.4) 8.6185×10−5 (29.0) 1.1362×10−23 (38.5) 0.1326 (13.1)

f3 Mean (Rank) 6.7303×10−4 (1) 5.5829 (3) 1.1979×10−3 (2) 9769.9145 (4)

Std. (CPU) 2.3793×10−4 (39.0) 3.6813 (24.5) 2.1109×10−3 (36.4) 2594.9593 (12.8)

f4 Mean (Rank) 0.0266 (1) 0.1078 (2) 0.4123 (3) 7.961 (4)

Std. (CPU) 0.0050 (20.1) 3.9981×10−2 (27.4) 0.25 (36.7) 1.5063 (12.1)

f5 Mean (Rank) 3.1034×10−4 (1) 49.8359 (3) 37.3582 (2) 338.5616 (4)

Std. (CPU) 1.7183×10−4 (35.3) 30.1771 (27.8) 32.1436 (37.6) 361.497 (11.3)

f6 Mean (Rank) 0 (1) 1.600×10−2 (2) 0.146 (3) 3.697 (4)

Std. (CPU) 0 (5.6) 0.1333 (27.1) 0.4182 (38.9) 1.9517 (12.3)

f7 Mean (Rank) 0.5000 (4) 7.3773×10−2 (2) 9.9024×10−3 (1) 0.1045 (3)

Std. (CPU) 0.2897 (28.4) 9.2557×10−2 (31.4) 3.5380×10−2 (41.4) 0.0362 (12.2)

Averaged rank 1.7 2.6 1.9 3.9

Final rank 1 3 2 4

3.3 Unimodal functions

It is proved that many deterministic optimization algorithms that use gradient information have good

performance in solving unimodal problems. However, the test of EAs on unimodal functions is needed to

have a comprehensive evaluation of an algorithm’s capability, and unimodal functions have been adopted

to assess the convergence rates of EAs [28]. Thus we tested the LPO on a set of unimodal functions in

comparison with other EAs. Table 5 lists the means and standard deviations of the function values found

in 1000 runs, and the average CPU time in seconds for each algorithm on unimodal functions f1–f7. The

results generated from CEP, FEP, CES, FES and GSO are tabulated in Table 6 in comparison with the

results generated by our LPO algorithm (as GSO was compared in both aspects in [2], we also adopted

GSO both in the two comparisons in order to obtain a comparable rank in the following parts).

Table 5 reveals that the LPO generates significantly better results than GA and GSO on the unimodal

functions f1–f7 on the whole. For the comparison of LPO and PSO, LPO outperforms PSO slightly on the

whole, PSO has better performance in f1, f2, and f7, while LPO performs better in f3–f6. In summary,

the four algorithms can be ranked as LPO>PSO>GSO>GA according to their test performances. From

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10 2379

Table 6 Comparison of LPO with GSO, CEP, FEP, CES, and FES on benchmark function f1 − f7

Mean function value (Rank)

(Standard deviation)

Function LPO GSO FEP CEP FES CES

f1 2.5×10−12 (1) 1.9×10−8 (2) 5.7×10−4 (6) 2.2×10−4 (4) 2.5×10−4 (5) 3.4×10−5 (3)

(4.0×10−13) (1.2×10−8) (1.3×10−4) (5.9×10−4) (6.8×10−4) (8.6×10−6)

f2 7.5×10−7 (1) 3.7×10−5 (2) 8.1×10−3 (4) 2.6×10−3 (3) 6.0×10−2 (6) 2.1×10−2 (5)

(8.0×10−8) (8.6×10−5) (7.7×10−4) (1.7×10−4) (9.6×10−3) (2.2×10−3)

f3 6.7×10−4 (2) 5.8 (6) 1.6×10−2 (4) 5.0×10−2 (5) 1.4×10−3 (3) 1.3×10−4 (1)

(2.4×10−4) (3.7) (1.4×10−2) (6.6×10−2) (5.3×10−4) (8.5×10−5)

f4 0.0266 (2) 0.1078 (3) 0.3 (4) 2.0 (6) 5.5×10−3 (1) 0.35 (5)

(0.0050) (0.0400) (0.5) (1.2) (6.5×10−4) (0.42)

f5 3.1×10−4 (1) 49.84 (6) 5.06 (2) 6.17 (3) 33.28 (5) 6.69 (4)

(1.7×10−4) (30.18) (5.87) (13.61) (43.13) (14.45)

f6 0 (1) 1.60×10−2 (4) 0 (1) 577.76 (6) 0 (1) 411.16 (5)

(0) (0.13) (0) (1125.76) (0) (695.35)

f7 0.5 (6) 7.4×10−2 (5) 7.6×10−3 (1) 1.8×10−2 (3) 1.2×10−2 (2) 3.0×10−2 (4)

(0.3) (9.3×10−2) (2.6×10−3) (6.4×10−3) (5.8×10−3) (1.5×10−2)

Averaged rank 2.0 4.0 3.1 4.3 3.3 3.9

Final rank 1 5 2 6 3 4

Table 7 Comparison of LPO with GSO, GA, and PSO on benchmark function f8–f13. All results were averaged over

1000 runs

Algorithms LPO GSO PSO GA

f8 Mean(Rank) −12569.4866 (2) −12569.4882 (1) −9659.6993 (4) −12566.0977 (3)

Std. (CPU) 1.3059×10−10 (40.6) 2.2140×10−2 (32.7) 463.725 (43.0) 2.1088 (16.2)

f9 Mean(Rank) 9.8517×10−26 (1) 1.0179 (3) 20.7863 (4) 0.6509 (2)

Std. (CPU) 2.3185×10−26 (13.9) 0.9509 (50.1) 5.9400 (71.4) 0.3594 (17.4)

f10 Mean(Rank) 3.6714×10−7 (1) 2.6548×10−5 (2) 1.3404×10−3 (3) 0.8678 (4)

Std. (CPU) 3.0267×10−8 (18.1) 3.0820×10−5 (34.4) 4.2388×10−2 (44.1) 0.2805(19.3)

f11 Mean(Rank) 5.9388×10−12 (1) 3.0792×10−2 (2) 0.2323 (3) 1.0038 (4)

Std. (CPU) 1.6813×10−12 (26.1) 3.0867×10−2 (35.9) 0.4434 (45.4) 6.7545×10−2 (16.1)

f12 Mean(Rank) 1.7757×10−14 (1) 2.7648×10−11 (2) 3.9503×10−2 (3) 4.3572×10−2 (4)

Std. (CPU) 1.2321×10−14 (51.0) 9.1674×10−11 (34.4) 9.1424×10−2 (44.8) 5.0579×10−2 (23.2)

f13 Mean(Rank) 2.4583×10−13 (1) 4.6948×10−5 (2) 5.0519×10−2 (3) 0.1681 (4)

Std. (CPU) 1.7165×10−13 (50.4) 7.0100×10−4 (35.6) 0.5691 (45.5) 7.0681×10−2 (22.6)

Averaged rank 1.17 2 3.33 3.5

Final rank 1 2 3 4

this table, we can also find that the average CPU time required for LPO (22.2 s) is less than those of

PSO (38.0 s) and GSO (27.8 s), but is more than GA (12.3 s).

It is obvious from Table 6 that LPO ranks the first among the six algorithms, because it significantly

outperforms all of the other five algorithms, and LPO requires much fewer function evolutions than CEP,

FEP, CES, and FES.

3.4 Multimodal functions with many local minima

3.4.1 30-dimension functions

Multimodal Functions are regarded as the most challenging problems, and many researchers developed

numerous algorithms to solve these problems. The experimental results of LPO from one thousand runs

and the published results of GSO, PSO, and GA are listed in Table 7. The results generated from CEP,

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

2380 Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10

Table 8 Comparison of LPO with GSO, CEP, FEP, CES, and FES on benchmark function f8–f13

Mean function value (Rank)

(Standard deviation)

Function LPO GSO FEP CEP FES CES

f8 −12569 (2) −12569 (1) −12555 (4) −7917 (5) −12556 (3) −7550 (6)

(1.3×10−10) (2.2×10−2) (52.6) (634.5) (32.53) (631.39)

f9 9.9×10−26 (1) 1.02 (4) 4.6×10−2 (2) 89.0 (6) 0.16 (3) 70.82 (5)

(2.3×10−26) (0.95) (1.2×10−2) (23.1) (0.33) (21.49)

f10 3.7×10−7 (1) 2.7×10−5 (2) 1.8×10−2 (4) 9.2 (6) 1.2×10−2 (3) 9.07 (5)

(3.0×10−8) (3.1×10−5) (2.1×10−2) (2.8) (1.8×10−3) (2.84)

f11 5.9×10−12 (1) 3.1×10−2 (3) 1.6×10−2 (2) 8.6×10−2 (5) 3.7×10−2 (4) 0.38 (6)

(1.7×10−12) (2.9×10−2) (2.2×10−2) (0.12) (5.0×10−2) (0.77)

f12 1.8×10−14 (1) 2.8×10−11 (2) 9.2×10−6 (3) 1.76 (6) 2.8×10−2 (4) 1.18 (5)

(1.2×10−14) (9.2×10−11) (6.1×10−5) (2.4) (8.1×10−11) (1.87)

f13 2.5×10−13 (1) 4.7×10−5 (2) 1.6×10−4 (4) 1.4 (5) 4.7×10−5 (3) 1.9 (6)

(1.7×10−13) (7.0×10−4) (7.3×10−5) (3.7) (1.5×10−5) (3.33)

Averaged rank 1.17 2.33 3.17 5.5 3.33 5.5

Final rank 1 2 3 5 4 5

4000

3000

2000

1000

0

0

5

0

5

−5−5

Figure 3 The two-dimensional version of f9.

FEP, CES, FES and GSO are tabulated in Table 8 for comparison with the results generated from our

LPO algorithm.

According to the results in Table 7, it is clear that LPO markedly outperforms GA and PSO in

all benchmark functions, LPO also has significantly better performance than GSO on most benchmark

functions, and the only exception is the function f8, thus LPO markedly outperforms GSO, PSO, and

GA on the whole. According to the test performances of the four algorithms, they can be ordered as

LPO>GSO>PSO>GA. The standard deviations of LPO also reveal that LPO has consistent performance.

From this table, we can also find that the average CPU time required for LPO (33.4 s) is less than those

of PSO (49.0 s) and GSO (37.2 s), but is more than GA (19.1 s).

Table 8 shows that LPO has significantly better performance than FEP, CEP, FES, CES and GSO

on the whole. LPO generates significantly better results than FEP, CEP, FES, and CES on all of

the multimodal functions f8–f13. Taking Generalized Rastrigin’s Function f9 for example, the two-

dimensional version of f9 is shown in Figure 3. Even in two-dimensional version, there are already many

local minima, and because the number of local minima increases exponentially as the function dimension

increases [34], the optimization results of GSO, PSO, GA, FEP, CEP, FES, and CES on f9 (30 dimension)

are quite large, while LPO obtains an excellent result.

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10 2381

Table 9 Comparison of LPO with GSO, CEP, FEP, CES, and FES on benchmark function f8(x)300–f13(x)300

Function Mean function value (Rank)

(Standard deviation)

LPO GSO GA PSO EP ES

f8(x)300 −125694.9 −125351.2 −117275.3 −87449.2 −78311.9 −66531.3

f9(x)300 1.0113×10−24 98.9 121.3 427.1 383.3 583.2

f10(x)300 3.7058×10−7 1.3527×10−3 6.24 3.9540×10−6 0.2946 9.6243

f11(x)300 9.3888×10−12 1.8329×10−7 0.37 1.81 2.8244×10−2 0.1583

f12(x)300 1.2838×10−14 8.2582×10−8 52.82 14.56 39.3 3093.2

f13(x)300 8.8317×10−13 2.0157×10−7 178.34 549.2 738.2 2123.2

3.4.2 300-dimension functions

With the development of science and technology, the real world optimization problems we are facing

usually include hundreds or even thousands of variables. Thus, the capability of solving high dimension

problems is crucial for an algorithm’s applicability to real world problems. However, previous studies

have shown that although some algorithms generated good results on relatively low-dimensional (n � 30)

benchmark problems, they do not perform satisfactorily for some large-scale problems [39]. Therefore, to

survey the capability of solving high dimension problems, a set of multimodal benchmark functions (f8–

f13) are extended to 300 dimensions and used in our experimental studies as high dimensional benchmark

functions. The experiment results and the published results are gathered and presented in Table 9.

Table 9 reveals that LPO significantly outperforms other five algorithms. For example, LPO optimizes

an extremely small result even in 300-dimension f9, while the other five algorithms perform much worse

and are 9.8× 1025 bigger than LPO at least. It can also be seen that although PSO achieves satisfactory

results in 30-dimensional multimodal benchmark problems (see Table 7), it cannot be scaled up to handle

most of the 300-dimensional cases except f10(x)
300. GSO performs consistently from 30-dimensional cases

to 300-dimensional cases; however, different from the 30-dimensional cases, LPO outperforms GSO on all

300-dimensional benchmark functions.

A limited scale of research scalability of EAs has been found [39,40]. In [39], four EP algorithms,

namely CEP, FEP, improved FEP (IFEP) [7], and a mixed EP (MEP) [39], were studied. The benchmark

functions used in their studies were a unimodal function f1 and a multimodal function f10 with dimensions

ranging from 100 to 300. It was found that CEP and FEP failed to converge on function f10. The average

results obtained by IFEP and MEP on function f10 in 300 dimensions were 7.6 × 10−2 and 5.5 × 10−2,

respectively, which were both worse than the results of our LPO algorithm.

Liu and Yao [40] also improved FEP with cooperative coevolution by decoupling the whole optimiza-

tion function to a set of coordinates of populations. Eight functions, including four unimodal and four

multimodal functions were used as benchmark functions in their studies. The results presented in their

paper were excellent, e.g., the result on 300-dimensional f10 was 3.6× 10−4. However, they are still much

worse than the results of LPO algorithm.

3.5 Multimodal functions with a few local minima

Though the benchmark functions f14–f23 are multimodal, they are in low dimensions (n � 6) and have

only a few local minima. Compared to the multimodal functions with many local minima (f8–f13),

this set of functions is not challenging [2]: Some of them can even be solved efficiently by deterministic

algorithms [41,42].

According to the comparison results in Table 10, it is clear that LPO ranks first compared with GA,

PSO and GSO. In the comparison with GA, LPO achieved better results on all benchmark functions f14–

f23. In comparison with PSO, LPO has better performance in f14, f16–f21. In comparison with GSO,

LPO achieved the same average results on benchmark functions f14, f16–f19, better results on function

f20–f23, and worse result on function f15. According to the test performances of the four algorithms,

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

2382 Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10

Table 10 Comparison of LPO with GSO, GA, and PSO on benchmark function f14 − f23. All results were averaged over

1000 runs

Algorithms LPO GSO PSO GA

f14 Mean(Rank) 0.9980 (1) 0.9980 (1) 1.0239 (4) 0.9989 (3)

Std. (CPU) 9.7905×10−8 (1.6) 0 (1.5) 0.1450 (1.8) 4.4333×10−3 (0.9)

f15 Mean(Rank) 5.6188×10−4 (3) 3.7713×10−4 (1) 3.8074×10−4 (2) 7.0878×10−3 (4)

Std. (CPU) 3.2395×10−4 (13.2) 2.5973×10−4 (36.6) 2.5094×10−4 (63.5) 7.8549E×10−3 (15.3)

f16 Mean(Rank) −1.031628 (1) −1.031628 (1) −1.0160 (4) −1.0298 (3)

Std. (CPU) 7.8267×10−8 (0.4) 0 (0.2) 1.2786×10−2 (0.3) 3.1314×10−3 (0.5)

f17 Mean(Rank) 0.3979 (1) 0.3979 (1) 0.4040 (3) 0.4040 (3)

Std. (CPU) 1.6336×10−9 (0.6) 0 (0.7) 6.8805×10−2 (1.1) 1.0385×10−2 (0.5)

f18 Mean(Rank) 3.0000 (1) 3.0 (1) 3.0050 (3) 7.5027 (4)

Std. (CPU) 8.2761×10−10 (0.6) 0 (1.5) 1.2117×10−3 (2.3) 10.3978 (1.0)

f19 Mean(Rank) −3.8628 (1) −3.8628 (1) −3.8582 (4) −3.8624 (3)

Std. (CPU) 1.9127×10−4 (0.7) 3.8430×10−6 (0.5) 3.2127×10−3 (0.9) 6.2841×10−4 (0.3)

f20 Mean(Rank) −3.3125 (1) −3.2697 (2) −3.1846 (4) −3.2627 (3)

Std. (CPU) 3.2417×10−2 (1.7) 5.9647×10−2 (1.0) 6.1053×10−2 (1.8) 6.0398×10−2 (0.7)

f21 Mean(Rank) −7.7062 (1) −6.09 (3) −7.5439 (2) −5.1653 (4)

Std. (CPU) 2.5598 (1.9) 3.4563 (1.7) 3.0303 (2.5) 2.9254 (1.3)

f22 Mean(Rank) −7.4658 (2) −6.5546 (3) −8.3553 (1) −5.4432 (4)

Std. (CPU) 2.8716 (1.9) 3.2443 (1.8) 2.0184 (2.6) 3.2778 (1.3)

f23 Mean(Rank) −8.3786 (2) −7.4022 (3) −8.9439 (1) −4.9108 (4)

Std. (CPU) 2.7921 (2.0) 3.2131 (1.9) 1.6304 (2.8) 3.4871 (1.4)

Averaged rank 1.4 1.7 2.8 3.5

Final rank 1 2 3 4

they can be ordered as LPO>GSO>PSO>GA. From this table, we can also find that the average CPU

time required for LPO (2.5 s) is less than those of PSO (8.0 s) and GSO (4.7 s), but is more than GA

(2.3 s).

Table 11 reveals that LPO generates significantly better results than FES and FEP on most benchmark

functions except f15 and f18, and better results than CEP and CES on most benchmark functions except

f15, f18, f22 and f23. And the six algorithms are ranked as LPO>GSO>CEP>CES>FES>FEP.

4 Algorithm property

4.1 Investigation of the effects of control parameters

For all experiments above, a certain set of parameter values were used. Here in this part, we will study

how LPO performs with different set of parameter values. Since the multimodal functions are regarded as

the most challenging problems [2], we are more interested in how LPO performs on multimodal functions

and select four multimodal functions, namely, f8, f9, f12, and f13. The control parameters of LPO mainly

involve constants k1, k2 used in changing search space, stagnation threshold ths, basic mating coefficient

mc0, long stagnation threshold thls, and tolerance of long stagnation times. We test the LPO algorithm

with different parameter values on the four benchmark functions for 50 runs. The results are tabulated

in Tables 12–15.

Table 12 indicates that the effect of the constants k1, k2 used in changing search space on the perfor-

mance of LPO is not significant on the whole. For f8, f9, f12 and f13, the effect of constants k1, k2 on

the precision and efficiency of the algorithm is really small and can be ignored.

Table 13 reveals that the effects of stagnation threshold ths, and long stagnation threshold thls on

the precision of LPO are not significant, and that the main effects of the two parameters on the LPO

algorithm are the efficiency. When ths is relatively big, e.g., 100 or even bigger, the efficiency of LPO is

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10 2383

Table 11 Comparison of LPO with GSO, CEP, FEP, CES, and FES on benchmark function f14 − f23

Mean function value (Rank)

(Standard deviation)

Function LPO GSO FEP CEP FES CES

f14 0.9980 (1) 0.9980 (1) 1.22 (4) 1.66 (5) 1.20 (3) 2.16 (6)

(9.8×10−8) (0) (0.56) (1.19) (0.63) (1.82)

f15 5.6188×10−4

(4)

4.1687×10−4

(1)

5.0×10−4

(3)

4.7×10−4

(2)

9.7×10−4

(5)

1.2×10−3

(6)

(3.2×10−4) (3.1×10−4) (3.2×10−4) (3.0×10−4) (4.2×10−4) (1.6×10−5)

f16 −1.031628

(1)

−1.031628

(1)

−1.03 (5) −1.03 (5) −1.0316

(3)

−1.0316

(3)

(7.8×10−8) (0) (4.9×10−4) (4.9×10−4) (6.0×10−7) (6.0×10−7)

f17 0.3979 (1) 0.3979 (1) 0.398 (3) 0.398 (3) 0.398 (3) 0.398 (3)

(1.6×10−9) (0) (1.5×10−7) (1.5×10−7) (6.0×10−8) (6.0×10−8)

f18 3.0 (1) 3.0 (1) 3.02 (6) 3.0 (1) 3.0 (1) 3.0 (1)

(8.3×10−10) (0) (0.11) (0) (0) (0)

f19 −3.8628 (1) −3.8628 (1) −3.86 (3) −3.86 (3) −3.86 (3) −3.86 (3)

(1.9×10−4) (3.8×10−6) (1.4×10−5) (1.4×10−2) (4.0×10−3) (1.4×10−5)

f20 −3.3125 (1) −3.2697 (4) −3.27 (3) −3.28 (2) −3.23 (6) −3.24 (5)

(3.2×10−2) (6.0×10−2) (5.9×10−2) (5.8×10−2) (0.12) (5.7×10−2)

f21 −7.7062 (1) −6.09 (4) −5.52 (6) −6.86 (3) −5.54 (5) −6.96 (2)

(2.5598) (3.4563) (1.59) (2.67) (1.82) (3.10)

f22 −7.4658 (3) −6.5546 (5) −5.52 (6) −8.27 (2) −6.67 (4) −8.31 (1)

(2.8716) (3.2443) (2.12) (2.95) (3.01) (3.10)

f23 −8.3786 (3) −7.4022 (5) −6.57 (6) −9.10 (1) −7.63 (4) −8.50 (2)

(2.7921) (3.2131) (3.14) (2.92) (3.27) (1.25)

Averaged

rank

1.7 2.4 4.5 2.7 3.7 3.2

Final rank 1 2 6 3 5 4

Table 12 Mean best function values and standard deviations of function f8, f9, f12 and f13 with different constants k1,

k2 used in changing search space. All results have been averaged over 50 runs

k1 and k2 f8(x) f9(x) f12(x) f13(x)

Mean (Std., CPU) Mean (Std., CPU) Mean (Std., CPU) Mean (Std., CPU)

k1 10 −12569

(4.4×10−12, 33)

1.0×10−25

(2.0×10−26, 17)

1.6×10−14

(1.1×10−14, 48)

3.0×10−13

(2.0×10−13, 50)

1×102 −12569

(4.5×10−12, 34)

1.0×10−25

(2.5×10−26, 15)

1.8×10−14

(1.3×10−14, 50)

2.8×10−13

(1.5×10−13, 52)

1×103 −12569

(4.7×10−12, 36)

1.0×10−25

(2.1×10−26, 14)

1.8×10−14

(1.2×10−14, 50)

2.5×10−13

(1.7×10−13, 50)

1×104 −12569

(4.8×10−12, 33)

1.1×10−25

(2.6×10−26, 14)

1.8×10−13

(1.1×10−14, 50)

2.8×10−13

(1.9×10−13, 54)

1×105 −12569

(4.8×10−12, 31)

1.0×10−25

(2.7×10−26, 16)

1.8×10−14

(1.2×10−14, 54)

1.9×10−13

(1.2×10−13, 59)

k2 3 −12569

(4.0×10−12, 34)

1.0×10−25

(2.5×10−26, 14)

1.7×10−14

(1.2×10−14, 49)

2.1×10−13

(1.3×10−13, 49)

5 −12569

(4.7×10−12, 36)

1.0×10−25

(2.6×10−26, 14)

1.8×10−14

(1.2×10−14, 50)

2.5×10−13

(1.7×10−13, 50)

10 −12569

(5.3×10−12, 34)

1.0×10−25

(2.3×10−26, 14)

2.0×10−14

(1.3×10−14, 50)

2.6×10−13

(1.5×10−13, 49)

50 −12569

(4.7×10−12, 34)

1.0×10−25

(2.9×10−26, 14)

2.0×10−14

(1.3×10−14, 50)

2.7×10−13

(1.5×10−13, 52)

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

2384 Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10

Table 13 Mean best function values and standard deviations of function f8, f9, f12 and f13 with different stagnation

thresholds ths and long stagnation thresholds thls used in changing search space. All results have been averaged over 50 runs

ths f8(x) f9(x) f12(x) f13(x)

and thls Mean (Std., CPU) Mean (Std., CPU) Mean (Std., CPU) Mean (Std., CPU)

ths 5 −12569

(4.5× 10−12, 38)

1.1×10−25

(3.1×10−26, 15)

1.9×10−14

(1.2×10−14, 50)

2.7×10−13

(1.6×10−13, 52)

10 −12569

(4.7×10−12, 36)

1.0×10−25

(3.0×10−26, 13)

1.8×10−14

(1.3×10−14, 49)

2.5×10−13

(1.7×10−13, 50)

20 −12569

(4.1×10−12, 34)

1.0×10−25

(2.0×10−26, 13)

1.8×10−14

(1.3×10−14, 55)

2.5×10−13

(1.8×10−13, 51)

50 −12569

(4.4×10−12, 37)

1.0×10−25

(2.8×10−26, 16)

1.6×10−14

(1.3×10−14, 58)

2.2×10−13

(1.6×10−13, 59)

100 −12569

(5.2×10−12, 48)

1.0×10−25

(2.7×10−26, 22)

1.6×10−14

(1.2×10−14, 60)

2.2×10−13

(1.4×10−13, 57)

thls 50 −12569

(4.5×10−12, 26)

1.0×10−25

(2.4×10−26, 10)

2.1×10−14

(1.3×10−14, 38)

1.9×10−13

(1.5×10−13, 38)

100 −12569

(4.7×10−12, 36)

1.0×10−25

(2.5×10−26, 14)

1.7×10−14

(1.3×10−14, 48)

2.5×10−13

(1.7×10−13, 50)

200 −12569

(4.6×10−12, 51)

1.0×10−25

(2.4×10−26, 22)

1.7×10−14

(1.2×10−14, 70)

3.0×10−13

(1.7×10−13, 74)

500 −12569

(5.2×10−12, 101)

1.0×10−25

(2.6×10−26, 46)

1.9×10−14

(1.4×10−14, 133)

4.4×10−11

(1.9×10−10, 135)

Table 14 Mean best function values and standard deviations of function f8, f9, f12 and f13 with different basic mating

coefficients mc0. All results have been averaged over 50 runs

mc0 f8(x) f9(x) f12(x) f13(x)

Mean (Std., CPU) Mean (Std., CPU) Mean (Std., CPU) Mean (Std., CPU)

0.1 −12569

(7.9×10−4, 89)

1.0×10−25

(2.6×10−26, 15)

2.0×10−14

(1.3×10−14,54)

2.7×10−13

(1.7×10−13, 68)

1 −12569

(4.1×10−12, 39)

1.1×10−25

(2.5×10−26, 14)

2.0×10−14

(1.3×10−14, 58)

2.4×10−13

(1.9×10−13, 67)

2 −12569

(4.7×10−12, 36)

1.0×10−25

(2.3×10−26, 14)

1.6×10−14

(1.1×10−14, 48)

2.5×10−13

(1.7×10−13, 50)

5 −12569

(4.8×10−12, 42)

1.0×10−25

(2.5×10−26, 9)

1.7×10−14

(1.2×10−14, 34)

3.0×10−13

(1.9×10−13, 21)

10 −12569

(4.2×10−2, 97)

1.0×10−25

(2.6×10−26, 9)

2.0×10−14

(1.3×10−14, 56)

2.4×10−13

(1.6×10−13, 22)

somewhat low. While thls is smaller, the efficiency of LPO is higher. In the experiments, two termination

conditions are set, one is to meet the maximum function evolutions, and the other is to meet the tolerance

of long stagnation times. Thus, thls has significant effect on the efficiency of LPO. Therefore, to obtain

a faster algorithm, comparatively low ths and thls can be set. And in the experiments of this study, ths

and thls are set to 10 and 100 for complicated problems respectively.

Table 14 reveals that the effects of basic mating coefficient mc0 on the precision of LPO are not

significant. For f9 and f13, a bigger mc0 leads to a better efficiency and nearly the same precision. For

f8 and f12, too lager or too small mc0 both lead to a fall in the efficiency, indicating that a proper mc0
is somewhat better. Thus, the bound of 2–5 is recommended, and in the experiments of this study, mc0
is set to 2.

Table 15 indicates that the effect of tolerance of long stagnation times is significant both on the precision

and the efficiency of LPO algorithm. For small tolerance of long stagnation times (e.g., 1), the evolution

may stop too early, leading to an unsatisfactory result. Of course, an early stop of the evolution leads to

a higher efficiency of the algorithm. However, too big tolerance of long stagnation times (e.g., 8) leads

to high precision but low efficiency; therefore, a moderate value of tolerance of long stagnation times is

recommended, and in the experiments of this study, tolerance of long stagnation times is set to 4.

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10 2385

Table 15 Mean best function values and standard deviations of function f8, f9, f12 and f13 with different tolerance of

long stagnation times. All results have been averaged over 50 runs

Tolerance f8(x) f9(x) f12(x) f13(x)

of thls Mean (Std., CPU) Mean (Std., CPU) Mean (Std., CPU) Mean (Std., CPU)

1 −12563 (1.1, 15) 2.7×10−10 (1.5×10−10, 7) 1.8×10−4 (2.9×10−4, 34) 7.3×10−3 (6.6×10−3, 35)

2 −12569 (1.3×10−4, 27) 1.0×10−10 (4.9×10−11, 9) 1.1×10−6 (9.0×10−7, 40) 1.4×10−5 (1.1×10−5, 39)

3 −12569 (1.0×10−8, 30) 1.0×10−17 (2.3×10−18, 12) 1.7×10−10 (1.2×10−10, 47) 1.9×10−9 (1.2×10−9, 46)

4 −12569 (4.7×10−12, 36) 9.8×10−26 (2.4×10−26, 14) 1.8×10−14 (1.1×10−14, 51) 2.5×10−13 (1.7×10−13, 50)

5 −12569 (4.8×10−12, 39) 0 (0, 16) 2.0×10−18 (1.4×10−18, 57) 2.8×10−17 (1.7×10−17, 56)

6 −12569 (2.1×10−12, 44) 0 (0, 18) 1.7×10−22 (1.2×10−22, 63) 2.2×10−21 (1.4×10−21, 60)

7 −12569 (2.5×10−12, 47) 0 (0, 20) 1.9×10−26 (1.2×10−26, 68) 2.7×10−25 (1.7×10−25, 66)

8 −12569 (2.0×10−12, 52) 0 (0, 23) 1.6×10−30 (1.1×10−30, 73) 2.6×10−29 (1.8×10−29, 74)

Table 16 Mean best function values and standard deviations of function f1, f9 and f12 with different search domains.

All results have been averaged over 50 runs

f1(x)(minimum in [0, 0, . . . , 0]) f9(x)(minimum in [0, 0, . . . , 0]) f12(x)(minimum in [1, 1, . . . , 1])

Domain Mean (Std., CPU) Domain Mean (Std., CPU) Domain Mean (Std., CPU)

[−100, 100]n 2.5×10−12

(4.0×10−13, 12)

[−5.12, 5.12]n 1.0×10−25

(2.4×10−26, 14)

[−50, 50]n 1.8×10−14

(1.1×10−14, 51)

[−150, 50]n 2.5×10−12

(3.9×10−13, 14)

[−7.62, 2.62]n 1.0×10−25

(2.6×10−26, 28)

[−75, 25]n 1.7×10−14

(1.2×10−14, 67)

[−198, 2]n 2.6×10−12

(3.5×10−13, 14)

[−10.12, 0.12]n 9.0×10−26

(2.8×10−26, 32)

[−98, 2]n 1.8×10−14

(1.2×10−14, 67)

4.2 Central tendency of the algorithm

For all unimodal functions and some multimodal functions, the minimum located in the center of the

search domain (Table 2), the initial population is set almost symmetrically around the minimum. There-

fore, this may have bias for algorithms which have a central tendency.

In this paper, the central tendency of the algorithm is surveyed by changing the search domain. One

unimodal function f1 and two multimodal functions f9 and f12, of which the minimum is in the center of

the search domain, are selected in the test (Table 16), for example, when the search domain is [−10.12,0.12]

for f9, and its minimum locates in [0, 0, . . . , 0], namely, the minimum locates in the edge of the domain.

The results show that there is no significant effect of the search domain movement. For the case that

the minimum locates in the edge of the domain, LPO can find even the same result as the case that

minimum locates in the center. Thus, we can conclude that there is no central tendency of the algorithm

LPO.

4.3 Algorithm aspect responsible for better performance

The results above show better performance of LPO than other algorithms. And the investigation of the

effects of control parameters shows that the algorithm performance of LPO is sensitive to stagnation

threshold ths, long stagnation threshold thls, and the tolerance of long stagnation times, which indicates

that the pride update strategy contributes to the better performance of LPO.

On the other hand, the brutal competition of individuals may be another factor. In the algorithm, it

is realized by optimizing the best member by one-dimension search in each dimension. Hence, the test

results of LPO with and without one-dimension search in each dimension are listed in Table 17. The

results prove the above deduction. The performance of LPO without one-dimension search is unstable.

For f9 and f10, better results are found in LPO without one-dimension search, while worse results are

found for all other selected functions, which indicates that the brutal competition of individuals (one-

dimension search) is another main factor that contributes to the performance of LPO.

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

2386 Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10

Table 17 Mean best function values and standard deviations of function f8 − f13 with or without one-dimension search

in each dimension. All results have been averaged over 50 runs

Function
With one-dimension search Without one-dimension search

Mean Std. CPU Mean Std. CPU

f8 −12569.4866 1.3059×10−10 41 −7343.0970 626.4107 53

f9 9.8517×10−26 2.3185×10−26 14 0 0 16

f10 3.6714×10−7 3.0267×10−8 18 8.8818×10−16 0 17

f11 5.9388×10−12 1.6813×10−12 26 1.3777 0.9129 68

f12 1.7757×10−14 1.2321×10−14 51 0.0096 0.0080 67

f13 2.4583×10−13 1.7165×10−13 50 2.9662 3.8398×10−5 30

0
0

500 1000 2000

2000

4000

6000

8000

10000

25001500 3000 0 1000 2000 3000 4000

0 1000 2000 3000 500040000
0

1000 2000 3000 4000

20

15

10

5

0

100

200

300

400

500

600 6
×108

5

4

3

2

1

0

Fu
nc

tio
n

va
lu

es
Fu

nc
tio

n
va

lu
es

Fu
nc

tio
n

va
lu

es
Fu

nc
tio

n
va

lu
es

Function evolutions Function evolutions

Function evolutionsFunction evolutions

f9 f10

f12f11

Figure 4 Convergence process of the algorithm on f9–f12.

4.4 Convergence process of the algorithm

The experiment results above present the performance of solving these problems, but it is also interesting

to study the convergence process of the algorithm so that we can have a comprehensive understanding

of algorithm capability. Since multimodal functions are regarded as the most challenging problems, here

we select four multimodal functions f9–f12 as the examples to show the convergence process of LPO

(Figure 4). The graphs show that the algorithm converges fast, for f9–f12, LPO finds the best results

after about 3000 function evolutions, much less than the maximal number of function evolutions for

f9–f12 (150000). And the results presented before show that optimization results are of high precision,

which means that LPO is an algorithm with high precision and efficiency.

The graphs also show that the maximal number of function evolutions can be reduced to enhance the

algorithm efficiency, since LPO already finds quite satisfaction results in few function evolutions. And in

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10 2387

the graphs of f9 and f10, the effect of one-dimension search is obvious (a remarkable improvement under

one function evolutions), which visually proves our conclusion that the brutal competition of individuals

is another main factor that contributes to the performance of LPO.

5 Discussion

As mentioned in Section 1, there are several optimization algorithms inspired by animal behavior, and

the most famous and successful one is ACO. Although both LPO and ACO draw inspiration from animal

behavior, LPO is inspired by the lion pride evolution behavior, while ACO is inspired specifically by ant

colonies’ social foraging behavior: By laying pheromone trails, ants collectively establish the shortest path

between their colony and feeding sources [2]. Another main difference is that ACO was proposed primar-

ily for combinatorial optimization problems, whereas at present LPO is more applicable to continuous

optimization problems.

PSO is another famous optimization algorithms inspired by animal behavior, and GSO is a newly

emerging optimization algorithms inspired by animal behavior. Similar to LPO, PSO and GSO were

proposed to solve continuous optimization problems. However, it is easy to find that they are different

from LPO. PSO and GSO were inspired by social foraging behavior: PSO was originally developed from

the models of coordinated animal motion such as Reynolds’s Boids [43] and Heppner and Grenander’s

model [44]. Animal swarm behavior, mainly bird flocking and fish schooling, serves as the metaphor for

the design of PSO. The GSO algorithm was inspired by general animal searching behavior. A generic

social foraging model, e.g., PS model, was employed as the framework to derive GSO [2]. LPO is inspired

by the lion pride evolution behavior, survival of the fittest is the main idea.

LPO shares more similarities with GAs than three other algorithms (PSO, GSO, and ACO). Both GAs

and LPO were inspired by the evolution process of biology; and survival of the fittest is the main idea of

both algorithms. However, there are also many differences between them. First and the fundamental one

is that GAs was inspired by general biology evolution process, and survival of the fittest, with mating,

and mutation as the main operators. LPO was inspired specifically by lion prides’ evolution process.

Lion prides’ evolution process has its characteristic different from other biology evolution processes. The

strongest males occupy nearly all mating resources, and if a new cohort of males is able to take over a pride,

they will seek to kill young cubs of their predecessors. Thus, LPO more relies on the brutal competition of

individuals than GAs, while GAs are closely related to the natural selection of individuals. Second, when

compared with GAs, lion prides’ evolution process has the characteristic of collective animal behavior.

Each member plays an important role in the persistence of a lion pride and the evolution of the pride.

The characteristic of LPO is more similar to serial computation, while that of GAs is more similar to

parallel computation.

The comparison above indicates the differences and similarities between LPO, and GSO, ACO, PSO,

and GAs. This may provide a possible explanation of why LPO could generate better results on most

problems. Inspired by lion prides’ evolution process, owing to the especial characteristic lion prides’

evolution process, LPO is similar to a hybrid heuristic algorithm that combines the evolution strategy of

GAs and collective animal behavior of SI. Thus, it is possible for LPO to better solve problems that are

difficult for both GAs and SI.

6 Conclusions

We have proposed a novel optimization algorithm LPO in this paper, which is based on lion prides’

evolution process and group living theory. This algorithm is conceptually simple and easy to implement.

From the studies of the algorithm property, it is found that the performance is not sensitive to most

algorithm parameters, which shows the robustness of the algorithm and that the parameters are not

problem-dependent. Central tendency of the algorithm is not found. But it is found that the pride

update strategy and brutal competition of individuals, which are proposed in this study, are two main

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

2388 Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10

factors that contribute to the performance of LPO. LPO can solve a variety of optimization problems

(including large scale), which makes it particularly attractive for real world applications.

A set of 23 benchmark functions have been used to test LPO in comparison with GSO, GA, PSO, CEP,

FEP, CES, and FES, respectively. For the unimodal functions, the results show that the LPO finds better

average results than those generated by the other seven algorithms in most benchmark functions. For

most of the multimodal benchmark functions (5 of 6) with many local minima, LPO is able to statistically

find better average results than those generated by the other seven algorithms. The test results obtained

from the multimodal benchmark functions with a few local minima shows that LPO also outperforms the

other seven algorithms. We also evaluated the LPO on a set of multimodal functions in 300 dimensions.

In all these cases, the LPO generates better averaged results on all benchmark functions than those

generated by GSO, GA, PSO, EP and ES.

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 50875151). The authors

thank Bu Hao (Southeast University), Yao Wei (Ohio State University Columbus), and Chen YiFeng (Tsinghua

University) for their useful suggestion on the organization of this paper.

References

1 Bonabeau E, Dorigo M, Theraulaz G. Inspiration for optimization from social insect behaviour. Nature, 2000, 406:

39–42

2 He S, Wu Q H, Saunders J R. Group search optimizer: an optimization algorithm inspired by animal searching behavior.

IEEE Trans Evol Comput, 2009, 13: 973–990

3 Barnard C J, Sibly R M. Producers and scroungers: A general model and its application to captive flocks of house

sparrows. Anim Behav, 1981, 29: 543–550

4 Holland J H. Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press, 1975

5 Shiu Y Y, Chi K C. A genetic algorithm that adaptively mutates and never revisits. IEEE Trans Evol Comput, 2009,

13: 454–472

6 Eiben A E, Smith J E. Introduction to Evolutionary Computing. New York: Springer, 2003

7 Yao X, Liu Y, Liu G. Evolutionary programming made faster. IEEE Trans Evol Comput, 1999, 3: 82–102

8 Eiben A E, Hinterding R, Michalewicz Z. Parameter control in evolutionary algorithms. IEEE Trans Evol Comput,

1999, 3: 124–141

9 Mauldin M L. Maintaining diversity in genetic search. In: Proceedings of National Conference on Artificial Intelligence,

Austin, USA, 1984. 247–250

10 Davis L. Handbook of Genetic Algorithms. New York: Van Nostrand Reinhold, 1991

11 Friedrich T, Hebbinghaus N, Neumann F. Rigorous analyses of simple diversity mechanisms. In: Proceedings of Genetic

Evolutionary Computation Conference, London, UK, 2007. 1219–1225

12 Goldberg D E, Richardson J. Genetic algorithms with sharing for multimodal function optimization. In: Proceedings

of International Conference on Genetic Algorithms, Cambridge, USA, 1987. 41–49

13 Alba E, Tomassini M. Parallelism and evolutionary algorithms. IEEE Trans Evol Comput, 2002, 6: 443–462

14 Xin B, Chen J, Peng Z H, et al. An adaptive hybrid optimizer based on particle swarm and differential evolution for

global optimization. Sci China Inf Sci, 2010, 53: 980–989

15 Tassing R, Guo L, Liu J, et al. Gene sorting in differential evolution with cross-generation mutation. Sci China Inf

Sci, 2011, 54: 268–278

16 David M, Manu D B, Raf H, et al. Classification with ant colony optimization. IEEE Trans Evol Comput, 2007, 11:

651–665

17 AlRashidi M R, El-Hawary M E. A survey of particle swarm optimization applications in electric power systems. IEEE

Trans Evol Comput, 2009, 13: 913–918

18 Valle Y D, Venayagamoorthy G K, Mohagheghi S, et al. Particle swarm optimization: Basic concepts, variants and

applications in power systems. IEEE Trans Evol Comput, 2008, 12: 171–195

19 Linhares A. Synthesizing a predatory search strategy for VLSI layouts. IEEE Trans Evol Comput, 1999, 3: 147–152

20 Ray T, Liew K M. Society and civilization: An optimization algorithm based on the simulation of social behavior.

IEEE Trans Evol Comput, 2003, 7: 386–396

21 Laumanns M, Rudolph G, Schwefel H P. A spatial predator-prey approach to multiobjective optimization: A prelim-

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

Wang B, et al. Sci China Inf Sci October 2012 Vol. 55 No. 10 2389

inary study. In: Proceedings of Parallel Problem Solving From Nature-PPSN V, Amsterdam, the Netherlands, 1998.

1498: 241–249

22 Passino K M. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst Mag, 2002,

22: 52–67

23 Dasgupta S, Das S, Abraham A, et al. Adaptive computational chemotaxis in bacterial foraging optimization: an

analysis. IEEE Trans Evol Comput, 2009, 13: 919–941

24 Muller S D, Marchetto J, Airaghi S, et al. Optimization based on bacterial chemotaxis. IEEE Trans Evol Comput,

2002, 6: 16–29

25 McComb K, Packer C, Pusey A. Roaring and numerical assessment in contests between groups of female lions (Panthera

leo). Anim Behav, 1994, 47: 379–387

26 Parker C. Infanticide is no fallacy. Am Anthropol, 2000, 102: 829–831

27 Bygott J D, Bertram B C R, Hanby J P. Male lions in large coalitions gains reproductive advantages. Nature, 1979,

282: 839–841

28 Yao X, Liu Y. Fast evolution strategies. In: Proceedings of Evolutionary Programming VI. Berlin: Springer-Verlag,

1997. 151–161

29 Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization

of multimodal functions. IEEE Trans Evol Comput, 2006, 10: 281–295

30 Pusey A E, Packer C. The evolution of sex biased dispersal in lions. Behaviour, 1987, 101: 275–310

31 Mosser A, Packer C. Group territoriality and the benefits of sociality in the African lion, Panthera leo. Anim Behav,

2009, 78: 359–370

32 Kissui B M, Mosser A, Packer C. Persistence and local extinction of lion prides in the Ngorongoro Crater, Tanzania.

Popul Ecol, 2010, 52: 103–111

33 Wolpert D H, Macready W G. No free lunch theorems for search. IEEE Trans Evol Comput, 1997, 1: 67–82

34 Töm A, Zilinskas A. Global Optimization. LNCS, vol. 350. Berlin: Springer-Verlag, 1989

35 Fogel L J, Owens A J, Walsh M J. Artificial intelligence through a simulation of evolution. In: Maxfield M, Callahan

A, Fogel L J, eds. Biophysics and Cybernetic Systems: Proceedings of the Second Cybernetic Sciences Symposium.

Washington: Spartan Books, 1965. 131–155

36 Fogel D B. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. New York: IEEE Press,

1995

37 Schwefel H P. Evolution and Optimum Seeking. New York: Wiley, 1995

38 Kennedy J, Eberhart R C. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural

Networks, vol. 4. Piscataway: IEEE Press, 1995. 1942–1948

39 Yao X, Liu Y. Scaling up evolutionary programming algorithms. In: Proceedings of the 7th Annual Conference on

Evolutionary Programming, LNCS. Berlin: Springer-Verlag, 1998. 103–112

40 Liu Y, Yao X, Zhao Q, et al. Scaling up fast evolutionary programming with cooperative coevolution. In: Proceedings

of the 2001 Congress on Evolutionary Computation. Piscataway: IEEE Press, 2001. 1101–1108

41 Lasserre J B. Global optimization with polynomials and the problem of moments. SIAM J Optimiz, 2001, 11: 796–817

42 Barhen J, Protopopescu V, Reister D. Trust: A deterministic algorithm for global optimization. Science, 1997, 276:

1094–1097

43 Reynolds C W. Flocks, herds and schools: A distributed behavioral model. Comput Graph, 1987, 21: 25–34

44 Heppner F, Grenander U. A stochastic nonlinear model for coordinated bird flocks. In: The Ubiquity of Chaos.

Washington: AAAS Publications, 1990

 http://engine.scichina.com/doi/10.1007/s11432-012-4548-0

